Cargando…
On Generalization Based on Bi et al. Iterative Methods with Eighth-Order Convergence for Solving Nonlinear Equations
The primary goal of this work is to provide a general optimal three-step class of iterative methods based on the schemes designed by Bi et al. (2009). Accordingly, it requires four functional evaluations per iteration with eighth-order convergence. Consequently, it satisfies Kung and Traub's co...
Autores principales: | Lotfi, Taher, Cordero, Alicia, Torregrosa, Juan R., Amir Abadi, Morteza, Mohammadi Zadeh, Maryam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3916023/ https://www.ncbi.nlm.nih.gov/pubmed/24563629 http://dx.doi.org/10.1155/2014/272949 |
Ejemplares similares
-
Convergence Analysis and Numerical Study of a Fixed-Point Iterative Method for Solving Systems of Nonlinear Equations
por: Huang, Na, et al.
Publicado: (2014) -
Strong convergence of iterative methods to solutions of certain nonlinear operator equations
por: Osilike, M O
Publicado: (1998) -
Convergence of iterations for linear equations
por: Nevanlinna, Olavi
Publicado: (1993) -
New Multi-Step Iterative Methods for Solving Systems of Nonlinear Equations and Their Application on GNSS Pseudorange Equations
por: Madhu, Kalyanasundaram, et al.
Publicado: (2020) -
On a New Iterative Scheme without Memory with Optimal Eighth Order
por: Sharifi, M., et al.
Publicado: (2014)