Cargando…
A Deterministic Analysis of Genome Integrity during Neoplastic Growth in Drosophila
The development of cancer has been associated with the gradual acquisition of genetic alterations leading to a progressive increase in malignancy. In various cancer types this process is enabled and accelerated by genome instability. While genome sequencing-based analysis of tumor genomes becomes in...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3916295/ https://www.ncbi.nlm.nih.gov/pubmed/24516544 http://dx.doi.org/10.1371/journal.pone.0087090 |
_version_ | 1782302687298060288 |
---|---|
author | Sievers, Cem Comoglio, Federico Seimiya, Makiko Merdes, Gunter Paro, Renato |
author_facet | Sievers, Cem Comoglio, Federico Seimiya, Makiko Merdes, Gunter Paro, Renato |
author_sort | Sievers, Cem |
collection | PubMed |
description | The development of cancer has been associated with the gradual acquisition of genetic alterations leading to a progressive increase in malignancy. In various cancer types this process is enabled and accelerated by genome instability. While genome sequencing-based analysis of tumor genomes becomes increasingly a standard procedure in human cancer research, the potential necessity of genome instability for tumorigenesis in Drosophila melanogaster has, to our knowledge, never been determined at DNA sequence level. Therefore, we induced formation of tumors by depletion of the Drosophila tumor suppressor Polyhomeotic and subjected them to genome sequencing. To achieve a highly resolved delineation of the genome structure we developed the Deterministic Structural Variation Detection (DSVD) algorithm, which identifies structural variations (SVs) with high accuracy and at single base resolution. The employment of long overlapping paired-end reads enables DSVD to perform a deterministic, i.e. fragment size distribution independent, identification of a large size spectrum of SVs. Application of DSVD and other algorithms to our sequencing data reveals substantial genetic variation with respect to the reference genome reflecting temporal separation of the reference and laboratory strains. The majority of SVs, constituted by small insertions/deletions, is potentially caused by erroneous replication or transposition of mobile elements. Nevertheless, the tumor did not depict a loss of genome integrity compared to the control. Altogether, our results demonstrate that genome stability is not affected inevitably during sustained tumor growth in Drosophila implying that tumorigenesis, in this model organism, can occur irrespective of genome instability and the accumulation of specific genetic alterations. |
format | Online Article Text |
id | pubmed-3916295 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39162952014-02-10 A Deterministic Analysis of Genome Integrity during Neoplastic Growth in Drosophila Sievers, Cem Comoglio, Federico Seimiya, Makiko Merdes, Gunter Paro, Renato PLoS One Research Article The development of cancer has been associated with the gradual acquisition of genetic alterations leading to a progressive increase in malignancy. In various cancer types this process is enabled and accelerated by genome instability. While genome sequencing-based analysis of tumor genomes becomes increasingly a standard procedure in human cancer research, the potential necessity of genome instability for tumorigenesis in Drosophila melanogaster has, to our knowledge, never been determined at DNA sequence level. Therefore, we induced formation of tumors by depletion of the Drosophila tumor suppressor Polyhomeotic and subjected them to genome sequencing. To achieve a highly resolved delineation of the genome structure we developed the Deterministic Structural Variation Detection (DSVD) algorithm, which identifies structural variations (SVs) with high accuracy and at single base resolution. The employment of long overlapping paired-end reads enables DSVD to perform a deterministic, i.e. fragment size distribution independent, identification of a large size spectrum of SVs. Application of DSVD and other algorithms to our sequencing data reveals substantial genetic variation with respect to the reference genome reflecting temporal separation of the reference and laboratory strains. The majority of SVs, constituted by small insertions/deletions, is potentially caused by erroneous replication or transposition of mobile elements. Nevertheless, the tumor did not depict a loss of genome integrity compared to the control. Altogether, our results demonstrate that genome stability is not affected inevitably during sustained tumor growth in Drosophila implying that tumorigenesis, in this model organism, can occur irrespective of genome instability and the accumulation of specific genetic alterations. Public Library of Science 2014-02-06 /pmc/articles/PMC3916295/ /pubmed/24516544 http://dx.doi.org/10.1371/journal.pone.0087090 Text en © 2014 Sievers et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Sievers, Cem Comoglio, Federico Seimiya, Makiko Merdes, Gunter Paro, Renato A Deterministic Analysis of Genome Integrity during Neoplastic Growth in Drosophila |
title | A Deterministic Analysis of Genome Integrity during Neoplastic Growth in Drosophila
|
title_full | A Deterministic Analysis of Genome Integrity during Neoplastic Growth in Drosophila
|
title_fullStr | A Deterministic Analysis of Genome Integrity during Neoplastic Growth in Drosophila
|
title_full_unstemmed | A Deterministic Analysis of Genome Integrity during Neoplastic Growth in Drosophila
|
title_short | A Deterministic Analysis of Genome Integrity during Neoplastic Growth in Drosophila
|
title_sort | deterministic analysis of genome integrity during neoplastic growth in drosophila |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3916295/ https://www.ncbi.nlm.nih.gov/pubmed/24516544 http://dx.doi.org/10.1371/journal.pone.0087090 |
work_keys_str_mv | AT sieverscem adeterministicanalysisofgenomeintegrityduringneoplasticgrowthindrosophila AT comogliofederico adeterministicanalysisofgenomeintegrityduringneoplasticgrowthindrosophila AT seimiyamakiko adeterministicanalysisofgenomeintegrityduringneoplasticgrowthindrosophila AT merdesgunter adeterministicanalysisofgenomeintegrityduringneoplasticgrowthindrosophila AT parorenato adeterministicanalysisofgenomeintegrityduringneoplasticgrowthindrosophila AT sieverscem deterministicanalysisofgenomeintegrityduringneoplasticgrowthindrosophila AT comogliofederico deterministicanalysisofgenomeintegrityduringneoplasticgrowthindrosophila AT seimiyamakiko deterministicanalysisofgenomeintegrityduringneoplasticgrowthindrosophila AT merdesgunter deterministicanalysisofgenomeintegrityduringneoplasticgrowthindrosophila AT parorenato deterministicanalysisofgenomeintegrityduringneoplasticgrowthindrosophila |