Cargando…
A network-assisted co-clustering algorithm to discover cancer subtypes based on gene expression
BACKGROUND: Cancer subtype information is critically important for understanding tumor heterogeneity. Existing methods to identify cancer subtypes have primarily focused on utilizing generic clustering algorithms (such as hierarchical clustering) to identify subtypes based on gene expression data. T...
Autores principales: | Liu, Yiyi, Gu, Quanquan, Hou, Jack P, Han, Jiawei, Ma, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3916445/ https://www.ncbi.nlm.nih.gov/pubmed/24491042 http://dx.doi.org/10.1186/1471-2105-15-37 |
Ejemplares similares
-
An algorithm of discovering signatures from DNA databases on a computer cluster
por: Lee, Hsiao Ping, et al.
Publicado: (2014) -
Network-aided Bi-Clustering for discovering cancer subtypes
por: Yu, Guoxian, et al.
Publicado: (2017) -
Assisted clustering of gene expression data using ANCut
por: Teran Hidalgo, Sebastian J., et al.
Publicado: (2017) -
A robustness metric for biological data clustering algorithms
por: Lu, Yuping, et al.
Publicado: (2019) -
TPSC: a module detection method based on topology potential and spectral clustering in weighted networks and its application in gene co-expression module discovery
por: Liu, Yusong, et al.
Publicado: (2021)