Cargando…

Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification

Ultrahigh-quality (Q) factor microresonators have a lot of applications in the photonics domain ranging from low-threshold nonlinear optics to integrated optical sensors. Glass-based whispering gallery mode (WGM) microresonators are easy to produce by melting techniques, however they suffer from sur...

Descripción completa

Detalles Bibliográficos
Autores principales: Rasoloniaina, A., Huet, V., Nguyên, T. K. N., Le Cren, E., Mortier, M., Michely, L., Dumeige, Y., Féron, P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3916894/
https://www.ncbi.nlm.nih.gov/pubmed/24503956
http://dx.doi.org/10.1038/srep04023
Descripción
Sumario:Ultrahigh-quality (Q) factor microresonators have a lot of applications in the photonics domain ranging from low-threshold nonlinear optics to integrated optical sensors. Glass-based whispering gallery mode (WGM) microresonators are easy to produce by melting techniques, however they suffer from surface contamination which limits their long-term quality factor to a few 10(8). Here we show that an optical gain provided by erbium ions can compensate for residual losses. Moreover it is possible to control the coupling regime of an ultrahigh Q-factor three port microresonator from undercoupling to spectral selective amplification by changing the pumping rate. The optical characterization method is based on frequency-swept cavity-ring-down-spectroscopy. This method allows the transmission and dispersive properties of perfectly transparent microresonators and intrinsic finesses up to 4.0 × 10(7) to be measured. Finally we characterize a critically coupled fluoride glass WGM microresonator with a diameter of 220 μm and a loaded Q-factor of 5.3 × 10(9) is demonstrated.