Cargando…
Anti-Chikungunya Viral Activities of Aplysiatoxin-Related Compounds from the Marine Cyanobacterium Trichodesmium erythraeum
Tropical filamentous marine cyanobacteria have emerged as a viable source of novel bioactive natural products for drug discovery and development. In the present study, aplysiatoxin (1), debromoaplysiatoxin (2) and anhydrodebromoaplysiatoxin (3), as well as two new analogues, 3-methoxyaplysiatoxin (4...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917264/ https://www.ncbi.nlm.nih.gov/pubmed/24394406 http://dx.doi.org/10.3390/md12010115 |
_version_ | 1782302819986964480 |
---|---|
author | Gupta, Deepak Kumar Kaur, Parveen Leong, See Ting Tan, Lik Tong Prinsep, Michèle R. Chu, Justin Jang Hann |
author_facet | Gupta, Deepak Kumar Kaur, Parveen Leong, See Ting Tan, Lik Tong Prinsep, Michèle R. Chu, Justin Jang Hann |
author_sort | Gupta, Deepak Kumar |
collection | PubMed |
description | Tropical filamentous marine cyanobacteria have emerged as a viable source of novel bioactive natural products for drug discovery and development. In the present study, aplysiatoxin (1), debromoaplysiatoxin (2) and anhydrodebromoaplysiatoxin (3), as well as two new analogues, 3-methoxyaplysiatoxin (4) and 3-methoxydebromoaplysiatoxin (5), are reported for the first time from the marine cyanobacterium Trichodesmium erythraeum. The identification of the bloom-forming cyanobacterial strain was confirmed based on phylogenetic analysis of its 16S rRNA sequences. Structural determination of the new analogues was achieved by extensive NMR spectroscopic analysis and comparison with NMR spectral data of known compounds. In addition, the antiviral activities of these marine toxins were assessed using Chikungunya virus (CHIKV)-infected cells. Post-treatment experiments using the debrominated analogues, namely compounds 2, 3 and 5, displayed dose-dependent inhibition of CHIKV when tested at concentrations ranging from 0.1 µM to 10.0 µM. Furthermore, debromoaplysiatoxin (2) and 3-methoxydebromoaplysiatoxin (5) exhibited significant anti-CHIKV activities with EC(50) values of 1.3 μM and 2.7 μM, respectively, and selectivity indices of 10.9 and 9.2, respectively. |
format | Online Article Text |
id | pubmed-3917264 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-39172642014-02-10 Anti-Chikungunya Viral Activities of Aplysiatoxin-Related Compounds from the Marine Cyanobacterium Trichodesmium erythraeum Gupta, Deepak Kumar Kaur, Parveen Leong, See Ting Tan, Lik Tong Prinsep, Michèle R. Chu, Justin Jang Hann Mar Drugs Article Tropical filamentous marine cyanobacteria have emerged as a viable source of novel bioactive natural products for drug discovery and development. In the present study, aplysiatoxin (1), debromoaplysiatoxin (2) and anhydrodebromoaplysiatoxin (3), as well as two new analogues, 3-methoxyaplysiatoxin (4) and 3-methoxydebromoaplysiatoxin (5), are reported for the first time from the marine cyanobacterium Trichodesmium erythraeum. The identification of the bloom-forming cyanobacterial strain was confirmed based on phylogenetic analysis of its 16S rRNA sequences. Structural determination of the new analogues was achieved by extensive NMR spectroscopic analysis and comparison with NMR spectral data of known compounds. In addition, the antiviral activities of these marine toxins were assessed using Chikungunya virus (CHIKV)-infected cells. Post-treatment experiments using the debrominated analogues, namely compounds 2, 3 and 5, displayed dose-dependent inhibition of CHIKV when tested at concentrations ranging from 0.1 µM to 10.0 µM. Furthermore, debromoaplysiatoxin (2) and 3-methoxydebromoaplysiatoxin (5) exhibited significant anti-CHIKV activities with EC(50) values of 1.3 μM and 2.7 μM, respectively, and selectivity indices of 10.9 and 9.2, respectively. MDPI 2014-01-03 /pmc/articles/PMC3917264/ /pubmed/24394406 http://dx.doi.org/10.3390/md12010115 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland. http://creativecommons.org/licenses/by/3.0/ This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Gupta, Deepak Kumar Kaur, Parveen Leong, See Ting Tan, Lik Tong Prinsep, Michèle R. Chu, Justin Jang Hann Anti-Chikungunya Viral Activities of Aplysiatoxin-Related Compounds from the Marine Cyanobacterium Trichodesmium erythraeum |
title | Anti-Chikungunya Viral Activities of Aplysiatoxin-Related Compounds from the Marine Cyanobacterium Trichodesmium erythraeum |
title_full | Anti-Chikungunya Viral Activities of Aplysiatoxin-Related Compounds from the Marine Cyanobacterium Trichodesmium erythraeum |
title_fullStr | Anti-Chikungunya Viral Activities of Aplysiatoxin-Related Compounds from the Marine Cyanobacterium Trichodesmium erythraeum |
title_full_unstemmed | Anti-Chikungunya Viral Activities of Aplysiatoxin-Related Compounds from the Marine Cyanobacterium Trichodesmium erythraeum |
title_short | Anti-Chikungunya Viral Activities of Aplysiatoxin-Related Compounds from the Marine Cyanobacterium Trichodesmium erythraeum |
title_sort | anti-chikungunya viral activities of aplysiatoxin-related compounds from the marine cyanobacterium trichodesmium erythraeum |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917264/ https://www.ncbi.nlm.nih.gov/pubmed/24394406 http://dx.doi.org/10.3390/md12010115 |
work_keys_str_mv | AT guptadeepakkumar antichikungunyaviralactivitiesofaplysiatoxinrelatedcompoundsfromthemarinecyanobacteriumtrichodesmiumerythraeum AT kaurparveen antichikungunyaviralactivitiesofaplysiatoxinrelatedcompoundsfromthemarinecyanobacteriumtrichodesmiumerythraeum AT leongseeting antichikungunyaviralactivitiesofaplysiatoxinrelatedcompoundsfromthemarinecyanobacteriumtrichodesmiumerythraeum AT tanliktong antichikungunyaviralactivitiesofaplysiatoxinrelatedcompoundsfromthemarinecyanobacteriumtrichodesmiumerythraeum AT prinsepmicheler antichikungunyaviralactivitiesofaplysiatoxinrelatedcompoundsfromthemarinecyanobacteriumtrichodesmiumerythraeum AT chujustinjanghann antichikungunyaviralactivitiesofaplysiatoxinrelatedcompoundsfromthemarinecyanobacteriumtrichodesmiumerythraeum |