Cargando…

Antibody Recognition of Shiga Toxins (Stxs): Computational Identification of the Epitopes of Stx2 Subunit A to the Antibodies 11E10 and S2C4

We have recently developed a new method to predict the epitopes of the antigens that are recognized by a specific antibody. In this work, we applied the method to identify the epitopes of the Shiga toxin (Stx2 subunit A) that were bound by two specific antibodies 11E10 and S2C4. The predicted epitop...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiao, Yongjun, Legge, Fiona S., Zeng, Xiaoyan, Treutlein, Herbert R., Zeng, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917601/
https://www.ncbi.nlm.nih.gov/pubmed/24516609
http://dx.doi.org/10.1371/journal.pone.0088191
Descripción
Sumario:We have recently developed a new method to predict the epitopes of the antigens that are recognized by a specific antibody. In this work, we applied the method to identify the epitopes of the Shiga toxin (Stx2 subunit A) that were bound by two specific antibodies 11E10 and S2C4. The predicted epitopes of Stx2 binding to the antibody 11E10 resembles the recognition surface constructed by the regions of Stx2 identified experimentally. For the S2C4, our results indicate that the antibody recognizes the Stx2 at two different regions on the protein surface. The first region (residues 246-254: ARSVRAVNE) is similar to the recognition region of the 11E10, while the second region is formed by two epitopes. The second region is particularly significant because it includes the amino acid sequence region that is diverse between Stx2 and other Stx (residues 176-188: QREFRQALSETAPV). This new recognition region is believed to play an important role in the experimentally observed selectivity of S2C4 to the Stx2.