Cargando…

Enhancing cellulase and hemicellulase production by genetic modification of the carbon catabolite repressor gene, creA, in Acremonium cellulolyticus

Acremonium cellulolyticus is one of several fungi that offer promise as an alternative to Trichoderma reesei for use in industrial cellulase production. However, the mechanism of cellulase production has not been studied at the molecular level because adequate genetic engineering tools for use in A....

Descripción completa

Detalles Bibliográficos
Autores principales: Fujii, Tatsuya, Inoue, Hiroyuki, Ishikawa, Kazuhiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917621/
https://www.ncbi.nlm.nih.gov/pubmed/24360128
http://dx.doi.org/10.1186/2191-0855-3-73
Descripción
Sumario:Acremonium cellulolyticus is one of several fungi that offer promise as an alternative to Trichoderma reesei for use in industrial cellulase production. However, the mechanism of cellulase production has not been studied at the molecular level because adequate genetic engineering tools for use in A. cellulolyticus are lacking. In the present study, we developed a gene disruption method for A. cellulolyticus, which needs a longer homologous region length. We cloned a putative A. cellulolyticus creA gene that is highly similar to the creA genes derived from other filamentous fungi, and isolated a creA disruptant strain by using the disruption method. Growth of the creA disruptant on agar plates was slower than that of the control strain. In the wild-type strain, the CreA protein was localized in the nucleus, suggesting that the cloned gene encodes the CreA transcription factor. Cellulase and xylanase production by the creA disruptant were higher than that of the control strain at the enzyme and transcription levels. Furthermore, the creA disruptant produced cellulase and xylanase in the presence of glucose. These data suggest both that the CreA protein functions as a catabolite repressor protein, and that disruption of creA is effective for enhancing enzyme production by A. cellulolyticus.