Cargando…

Connection Changes in Somatosensory Cortex Induced by Different Doses of Propofol

BACKGROUND: The mechanism by which general anesthetics, widely used in clinical practice for over 160 years, effects on sensory responsiveness has been unclear until now. In the present study, the authors sought to explore the effect of different doses of propofol on somatosensory cortex by whisker...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Zhaoduan, Liu, Xingkui, Zhang, Yi, Shi, Jinshan, Zhang, Yu, Xie, Peng, Yu, Tian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917837/
https://www.ncbi.nlm.nih.gov/pubmed/24516566
http://dx.doi.org/10.1371/journal.pone.0087829
Descripción
Sumario:BACKGROUND: The mechanism by which general anesthetics, widely used in clinical practice for over 160 years, effects on sensory responsiveness has been unclear until now. In the present study, the authors sought to explore the effect of different doses of propofol on somatosensory cortex by whisker stimulation in rats. METHODS: In a fixed cage, rats were anesthetized with propofol 80 mg/kg intraperitoneally and then cathetered tail vein with 23-gauge metal needle connected with a pump. Two holes (2 mm diameter) were drilled and recording electrodes implantated in the primary somatosensory cortex barrel field (S1BF) and secondary somatosensory cortex (S2). The extracellular (20 rats) and intracellular (8 rats) recordings were used to test the neuron activity in both cortices at different doses of propofol (20, 40 and 80 mg/kg/h) through tail vein by pump. Meantime, vibrissal, olfactory, corneal responses (VOCR, sedation), and tail-pinch response (TRP, analgesia) were tested every 10 min during the doses of propofol 20, 40 and 80 mg/kg/h. RESULTS: VOCR and TRP were depressed by propofol in a dose-dependent manner. The amplitude by whisker stimulation in S1BF was stronger and the peak latency was shorter compared with that of in S2. The response latency of S1BF and S2 was increased by raising infusion rate of propofol with the response latency in S2 being longer than that in S1BF at the same doses of propofol. The cross-correlation between S1BF and S2 decreased as the propofol infusion rate increased. The input resistance was higher by increasing infusion rate of propofol. CONCLUSION: The sedation and analgesia effects of propofol were dose-dependent. Both the connectivity and instinctive oscillation between S1BF and S2 were proportionally modulated by the different doses of propofol.