Cargando…
A Bottleneck Model of Set-Specific Capture
Set-specific contingent attentional capture is a particularly strong form of capture that occurs when multiple attentional sets guide visual search (e.g., “search for green letters” and “search for orange letters”). In this type of capture, a potential target that matches one attentional set (e.g. a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917861/ https://www.ncbi.nlm.nih.gov/pubmed/24516634 http://dx.doi.org/10.1371/journal.pone.0088313 |
Sumario: | Set-specific contingent attentional capture is a particularly strong form of capture that occurs when multiple attentional sets guide visual search (e.g., “search for green letters” and “search for orange letters”). In this type of capture, a potential target that matches one attentional set (e.g. a green stimulus) impairs the ability to identify a temporally proximal target that matches another attentional set (e.g. an orange stimulus). In the present study, we investigated whether set-specific capture stems from a bottleneck in working memory or from a depletion of limited resources that are distributed across multiple attentional sets. In each trial, participants searched a rapid serial visual presentation (RSVP) stream for up to three target letters (T1–T3) that could appear in any of three target colors (orange, green, or lavender). The most revealing findings came from trials in which T1 and T2 matched different attentional sets and were both identified. In these trials, T3 accuracy was lower when it did not match T1’s set than when it did match, but only when participants failed to identify T2. These findings support a bottleneck model of set-specific capture in which a limited-capacity mechanism in working memory enhances only one attentional set at a time, rather than a resource model in which processing capacity is simultaneously distributed across multiple attentional sets. |
---|