Cargando…
A Machine Learning Approach for Specification of Spinal Cord Injuries Using Fractional Anisotropy Values Obtained from Diffusion Tensor Images
Diffusion Tensor Imaging (DTI) uses in vivo images that describe extracellular structures by measuring the diffusion of water molecules. These images capture axonal movement and orientation using echo-planar imaging and provide critical information for evaluating lesions and structural damage in the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918356/ https://www.ncbi.nlm.nih.gov/pubmed/24575150 http://dx.doi.org/10.1155/2014/276589 |
_version_ | 1782302952783872000 |
---|---|
author | Tay, Bunheang Hyun, Jung Keun Oh, Sejong |
author_facet | Tay, Bunheang Hyun, Jung Keun Oh, Sejong |
author_sort | Tay, Bunheang |
collection | PubMed |
description | Diffusion Tensor Imaging (DTI) uses in vivo images that describe extracellular structures by measuring the diffusion of water molecules. These images capture axonal movement and orientation using echo-planar imaging and provide critical information for evaluating lesions and structural damage in the central nervous system. This information can be used for prediction of Spinal Cord Injuries (SCIs) and for assessment of patients who are recovering from such injuries. In this paper, we propose a classification scheme for identifying healthy individuals and patients. In the proposed scheme, a dataset is first constructed from DTI images, after which the constructed dataset undergoes feature selection and classification. The experiment results show that the proposed scheme aids in the diagnosis of SCIs. |
format | Online Article Text |
id | pubmed-3918356 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-39183562014-02-26 A Machine Learning Approach for Specification of Spinal Cord Injuries Using Fractional Anisotropy Values Obtained from Diffusion Tensor Images Tay, Bunheang Hyun, Jung Keun Oh, Sejong Comput Math Methods Med Research Article Diffusion Tensor Imaging (DTI) uses in vivo images that describe extracellular structures by measuring the diffusion of water molecules. These images capture axonal movement and orientation using echo-planar imaging and provide critical information for evaluating lesions and structural damage in the central nervous system. This information can be used for prediction of Spinal Cord Injuries (SCIs) and for assessment of patients who are recovering from such injuries. In this paper, we propose a classification scheme for identifying healthy individuals and patients. In the proposed scheme, a dataset is first constructed from DTI images, after which the constructed dataset undergoes feature selection and classification. The experiment results show that the proposed scheme aids in the diagnosis of SCIs. Hindawi Publishing Corporation 2014 2014-01-21 /pmc/articles/PMC3918356/ /pubmed/24575150 http://dx.doi.org/10.1155/2014/276589 Text en Copyright © 2014 Bunheang Tay et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Tay, Bunheang Hyun, Jung Keun Oh, Sejong A Machine Learning Approach for Specification of Spinal Cord Injuries Using Fractional Anisotropy Values Obtained from Diffusion Tensor Images |
title | A Machine Learning Approach for Specification of Spinal Cord Injuries Using Fractional Anisotropy Values Obtained from Diffusion Tensor Images |
title_full | A Machine Learning Approach for Specification of Spinal Cord Injuries Using Fractional Anisotropy Values Obtained from Diffusion Tensor Images |
title_fullStr | A Machine Learning Approach for Specification of Spinal Cord Injuries Using Fractional Anisotropy Values Obtained from Diffusion Tensor Images |
title_full_unstemmed | A Machine Learning Approach for Specification of Spinal Cord Injuries Using Fractional Anisotropy Values Obtained from Diffusion Tensor Images |
title_short | A Machine Learning Approach for Specification of Spinal Cord Injuries Using Fractional Anisotropy Values Obtained from Diffusion Tensor Images |
title_sort | machine learning approach for specification of spinal cord injuries using fractional anisotropy values obtained from diffusion tensor images |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918356/ https://www.ncbi.nlm.nih.gov/pubmed/24575150 http://dx.doi.org/10.1155/2014/276589 |
work_keys_str_mv | AT taybunheang amachinelearningapproachforspecificationofspinalcordinjuriesusingfractionalanisotropyvaluesobtainedfromdiffusiontensorimages AT hyunjungkeun amachinelearningapproachforspecificationofspinalcordinjuriesusingfractionalanisotropyvaluesobtainedfromdiffusiontensorimages AT ohsejong amachinelearningapproachforspecificationofspinalcordinjuriesusingfractionalanisotropyvaluesobtainedfromdiffusiontensorimages AT taybunheang machinelearningapproachforspecificationofspinalcordinjuriesusingfractionalanisotropyvaluesobtainedfromdiffusiontensorimages AT hyunjungkeun machinelearningapproachforspecificationofspinalcordinjuriesusingfractionalanisotropyvaluesobtainedfromdiffusiontensorimages AT ohsejong machinelearningapproachforspecificationofspinalcordinjuriesusingfractionalanisotropyvaluesobtainedfromdiffusiontensorimages |