Cargando…

A Machine Learning Approach for Specification of Spinal Cord Injuries Using Fractional Anisotropy Values Obtained from Diffusion Tensor Images

Diffusion Tensor Imaging (DTI) uses in vivo images that describe extracellular structures by measuring the diffusion of water molecules. These images capture axonal movement and orientation using echo-planar imaging and provide critical information for evaluating lesions and structural damage in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Tay, Bunheang, Hyun, Jung Keun, Oh, Sejong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918356/
https://www.ncbi.nlm.nih.gov/pubmed/24575150
http://dx.doi.org/10.1155/2014/276589
_version_ 1782302952783872000
author Tay, Bunheang
Hyun, Jung Keun
Oh, Sejong
author_facet Tay, Bunheang
Hyun, Jung Keun
Oh, Sejong
author_sort Tay, Bunheang
collection PubMed
description Diffusion Tensor Imaging (DTI) uses in vivo images that describe extracellular structures by measuring the diffusion of water molecules. These images capture axonal movement and orientation using echo-planar imaging and provide critical information for evaluating lesions and structural damage in the central nervous system. This information can be used for prediction of Spinal Cord Injuries (SCIs) and for assessment of patients who are recovering from such injuries. In this paper, we propose a classification scheme for identifying healthy individuals and patients. In the proposed scheme, a dataset is first constructed from DTI images, after which the constructed dataset undergoes feature selection and classification. The experiment results show that the proposed scheme aids in the diagnosis of SCIs.
format Online
Article
Text
id pubmed-3918356
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-39183562014-02-26 A Machine Learning Approach for Specification of Spinal Cord Injuries Using Fractional Anisotropy Values Obtained from Diffusion Tensor Images Tay, Bunheang Hyun, Jung Keun Oh, Sejong Comput Math Methods Med Research Article Diffusion Tensor Imaging (DTI) uses in vivo images that describe extracellular structures by measuring the diffusion of water molecules. These images capture axonal movement and orientation using echo-planar imaging and provide critical information for evaluating lesions and structural damage in the central nervous system. This information can be used for prediction of Spinal Cord Injuries (SCIs) and for assessment of patients who are recovering from such injuries. In this paper, we propose a classification scheme for identifying healthy individuals and patients. In the proposed scheme, a dataset is first constructed from DTI images, after which the constructed dataset undergoes feature selection and classification. The experiment results show that the proposed scheme aids in the diagnosis of SCIs. Hindawi Publishing Corporation 2014 2014-01-21 /pmc/articles/PMC3918356/ /pubmed/24575150 http://dx.doi.org/10.1155/2014/276589 Text en Copyright © 2014 Bunheang Tay et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Tay, Bunheang
Hyun, Jung Keun
Oh, Sejong
A Machine Learning Approach for Specification of Spinal Cord Injuries Using Fractional Anisotropy Values Obtained from Diffusion Tensor Images
title A Machine Learning Approach for Specification of Spinal Cord Injuries Using Fractional Anisotropy Values Obtained from Diffusion Tensor Images
title_full A Machine Learning Approach for Specification of Spinal Cord Injuries Using Fractional Anisotropy Values Obtained from Diffusion Tensor Images
title_fullStr A Machine Learning Approach for Specification of Spinal Cord Injuries Using Fractional Anisotropy Values Obtained from Diffusion Tensor Images
title_full_unstemmed A Machine Learning Approach for Specification of Spinal Cord Injuries Using Fractional Anisotropy Values Obtained from Diffusion Tensor Images
title_short A Machine Learning Approach for Specification of Spinal Cord Injuries Using Fractional Anisotropy Values Obtained from Diffusion Tensor Images
title_sort machine learning approach for specification of spinal cord injuries using fractional anisotropy values obtained from diffusion tensor images
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918356/
https://www.ncbi.nlm.nih.gov/pubmed/24575150
http://dx.doi.org/10.1155/2014/276589
work_keys_str_mv AT taybunheang amachinelearningapproachforspecificationofspinalcordinjuriesusingfractionalanisotropyvaluesobtainedfromdiffusiontensorimages
AT hyunjungkeun amachinelearningapproachforspecificationofspinalcordinjuriesusingfractionalanisotropyvaluesobtainedfromdiffusiontensorimages
AT ohsejong amachinelearningapproachforspecificationofspinalcordinjuriesusingfractionalanisotropyvaluesobtainedfromdiffusiontensorimages
AT taybunheang machinelearningapproachforspecificationofspinalcordinjuriesusingfractionalanisotropyvaluesobtainedfromdiffusiontensorimages
AT hyunjungkeun machinelearningapproachforspecificationofspinalcordinjuriesusingfractionalanisotropyvaluesobtainedfromdiffusiontensorimages
AT ohsejong machinelearningapproachforspecificationofspinalcordinjuriesusingfractionalanisotropyvaluesobtainedfromdiffusiontensorimages