Cargando…
Skeletal Muscle-derived Hematopoietic Stem Cells: Muscular Dystrophy Therapy by Bone Marrow Transplantation
For postnatal growth and regeneration of skeletal muscle, satellite cells, a self-renewing pool of muscle stem cells, give rise to daughter myogenic precursor cells that contribute to the formation of new muscle fibers. In addition to this key myogenic cell class, adult skeletal muscle also contains...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918728/ https://www.ncbi.nlm.nih.gov/pubmed/24524008 http://dx.doi.org/10.4172/2157-7633.S11-005 |
Sumario: | For postnatal growth and regeneration of skeletal muscle, satellite cells, a self-renewing pool of muscle stem cells, give rise to daughter myogenic precursor cells that contribute to the formation of new muscle fibers. In addition to this key myogenic cell class, adult skeletal muscle also contains hematopoietic stem cell and progenitor cell populations which can be purified as a side population (SP) fraction or as a hematopoietic marker CD45-positive cell population. These muscle-derived hematopoietic stem/progenitor cell populations are surprisingly capable of differentiation into hematopoietic cells both after transplantation into irradiated mice and during in vitro colony formation assay. Therefore, these muscle-derived hematopoietic stem/progenitor cells appear to have characteristics similar to classical hematopoietic stem/progenitor cells found in bone marrow. This review outlines recent findings regarding hematopoietic stem/progenitor cell populations residing in adult skeletal muscle and discusses their myogenic potential along with their role in the stem cell niche and related cell therapies for approaching treatment of Duchenne muscular dystrophy. |
---|