Cargando…
AHaH Computing–From Metastable Switches to Attractors to Machine Learning
Modern computing architecture based on the separation of memory and processing leads to a well known problem called the von Neumann bottleneck, a restrictive limit on the data bandwidth between CPU and RAM. This paper introduces a new approach to computing we call AHaH computing where memory and pro...
Autores principales: | Nugent, Michael Alexander, Molter, Timothy Wesley |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919716/ https://www.ncbi.nlm.nih.gov/pubmed/24520315 http://dx.doi.org/10.1371/journal.pone.0085175 |
Ejemplares similares
-
Machine Learning Outperforms ACC/AHA CVD Risk Calculator in MESA
por: Kakadiaris, Ioannis A., et al.
Publicado: (2018) -
Working memory dynamics and spontaneous activity in a flip-flop oscillations network model with a Milnor attractor
por: Colliaux, David, et al.
Publicado: (2009) -
Machine learning the metastable phase diagram of covalently bonded carbon
por: Srinivasan, Srilok, et al.
Publicado: (2022) -
Atomistic and machine learning studies of solute segregation in metastable grain boundaries
por: Mahmood, Yasir, et al.
Publicado: (2022) -
Gems, computers and attractors for 3-manifolds
por: Lins, Sostenes
Publicado: (1995)