Cargando…

Dual-Energy Micro-CT Functional Imaging of Primary Lung Cancer in Mice Using Gold and Iodine Nanoparticle Contrast Agents: A Validation Study

PURPOSE: To provide additional functional information for tumor characterization, we investigated the use of dual-energy computed tomography for imaging murine lung tumors. Tumor blood volume and vascular permeability were quantified using gold and iodine nanoparticles. This approach was compared wi...

Descripción completa

Detalles Bibliográficos
Autores principales: Ashton, Jeffrey R., Clark, Darin P., Moding, Everett J., Ghaghada, Ketan, Kirsch, David G., West, Jennifer L., Badea, Cristian T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919743/
https://www.ncbi.nlm.nih.gov/pubmed/24520351
http://dx.doi.org/10.1371/journal.pone.0088129
_version_ 1782303072737820672
author Ashton, Jeffrey R.
Clark, Darin P.
Moding, Everett J.
Ghaghada, Ketan
Kirsch, David G.
West, Jennifer L.
Badea, Cristian T.
author_facet Ashton, Jeffrey R.
Clark, Darin P.
Moding, Everett J.
Ghaghada, Ketan
Kirsch, David G.
West, Jennifer L.
Badea, Cristian T.
author_sort Ashton, Jeffrey R.
collection PubMed
description PURPOSE: To provide additional functional information for tumor characterization, we investigated the use of dual-energy computed tomography for imaging murine lung tumors. Tumor blood volume and vascular permeability were quantified using gold and iodine nanoparticles. This approach was compared with a single contrast agent/single-energy CT method. Ex vivo validation studies were performed to demonstrate the accuracy of in vivo contrast agent quantification by CT. METHODS: Primary lung tumors were generated in LSL-Kras(G12D); p53(FL/FL) mice. Gold nanoparticles were injected, followed by iodine nanoparticles two days later. The gold accumulated in tumors, while the iodine provided intravascular contrast. Three dual-energy CT scans were performed–two for the single contrast agent method and one for the dual contrast agent method. Gold and iodine concentrations in each scan were calculated using a dual-energy decomposition. For each method, the tumor fractional blood volume was calculated based on iodine concentration, and tumor vascular permeability was estimated based on accumulated gold concentration. For validation, the CT-derived measurements were compared with histology and inductively-coupled plasma optical emission spectroscopy measurements of gold concentrations in tissues. RESULTS: Dual-energy CT enabled in vivo separation of gold and iodine contrast agents and showed uptake of gold nanoparticles in the spleen, liver, and tumors. The tumor fractional blood volume measurements determined from the two imaging methods were in agreement, and a high correlation (R(2) = 0.81) was found between measured fractional blood volume and histology-derived microvascular density. Vascular permeability measurements obtained from the two imaging methods agreed well with ex vivo measurements. CONCLUSIONS: Dual-energy CT using two types of nanoparticles is equivalent to the single nanoparticle method, but allows for measurement of fractional blood volume and permeability with a single scan. As confirmed by ex vivo methods, CT-derived nanoparticle concentrations are accurate. This method could play an important role in lung tumor characterization by CT.
format Online
Article
Text
id pubmed-3919743
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-39197432014-02-11 Dual-Energy Micro-CT Functional Imaging of Primary Lung Cancer in Mice Using Gold and Iodine Nanoparticle Contrast Agents: A Validation Study Ashton, Jeffrey R. Clark, Darin P. Moding, Everett J. Ghaghada, Ketan Kirsch, David G. West, Jennifer L. Badea, Cristian T. PLoS One Research Article PURPOSE: To provide additional functional information for tumor characterization, we investigated the use of dual-energy computed tomography for imaging murine lung tumors. Tumor blood volume and vascular permeability were quantified using gold and iodine nanoparticles. This approach was compared with a single contrast agent/single-energy CT method. Ex vivo validation studies were performed to demonstrate the accuracy of in vivo contrast agent quantification by CT. METHODS: Primary lung tumors were generated in LSL-Kras(G12D); p53(FL/FL) mice. Gold nanoparticles were injected, followed by iodine nanoparticles two days later. The gold accumulated in tumors, while the iodine provided intravascular contrast. Three dual-energy CT scans were performed–two for the single contrast agent method and one for the dual contrast agent method. Gold and iodine concentrations in each scan were calculated using a dual-energy decomposition. For each method, the tumor fractional blood volume was calculated based on iodine concentration, and tumor vascular permeability was estimated based on accumulated gold concentration. For validation, the CT-derived measurements were compared with histology and inductively-coupled plasma optical emission spectroscopy measurements of gold concentrations in tissues. RESULTS: Dual-energy CT enabled in vivo separation of gold and iodine contrast agents and showed uptake of gold nanoparticles in the spleen, liver, and tumors. The tumor fractional blood volume measurements determined from the two imaging methods were in agreement, and a high correlation (R(2) = 0.81) was found between measured fractional blood volume and histology-derived microvascular density. Vascular permeability measurements obtained from the two imaging methods agreed well with ex vivo measurements. CONCLUSIONS: Dual-energy CT using two types of nanoparticles is equivalent to the single nanoparticle method, but allows for measurement of fractional blood volume and permeability with a single scan. As confirmed by ex vivo methods, CT-derived nanoparticle concentrations are accurate. This method could play an important role in lung tumor characterization by CT. Public Library of Science 2014-02-10 /pmc/articles/PMC3919743/ /pubmed/24520351 http://dx.doi.org/10.1371/journal.pone.0088129 Text en © 2014 Ashton et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Ashton, Jeffrey R.
Clark, Darin P.
Moding, Everett J.
Ghaghada, Ketan
Kirsch, David G.
West, Jennifer L.
Badea, Cristian T.
Dual-Energy Micro-CT Functional Imaging of Primary Lung Cancer in Mice Using Gold and Iodine Nanoparticle Contrast Agents: A Validation Study
title Dual-Energy Micro-CT Functional Imaging of Primary Lung Cancer in Mice Using Gold and Iodine Nanoparticle Contrast Agents: A Validation Study
title_full Dual-Energy Micro-CT Functional Imaging of Primary Lung Cancer in Mice Using Gold and Iodine Nanoparticle Contrast Agents: A Validation Study
title_fullStr Dual-Energy Micro-CT Functional Imaging of Primary Lung Cancer in Mice Using Gold and Iodine Nanoparticle Contrast Agents: A Validation Study
title_full_unstemmed Dual-Energy Micro-CT Functional Imaging of Primary Lung Cancer in Mice Using Gold and Iodine Nanoparticle Contrast Agents: A Validation Study
title_short Dual-Energy Micro-CT Functional Imaging of Primary Lung Cancer in Mice Using Gold and Iodine Nanoparticle Contrast Agents: A Validation Study
title_sort dual-energy micro-ct functional imaging of primary lung cancer in mice using gold and iodine nanoparticle contrast agents: a validation study
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919743/
https://www.ncbi.nlm.nih.gov/pubmed/24520351
http://dx.doi.org/10.1371/journal.pone.0088129
work_keys_str_mv AT ashtonjeffreyr dualenergymicroctfunctionalimagingofprimarylungcancerinmiceusinggoldandiodinenanoparticlecontrastagentsavalidationstudy
AT clarkdarinp dualenergymicroctfunctionalimagingofprimarylungcancerinmiceusinggoldandiodinenanoparticlecontrastagentsavalidationstudy
AT modingeverettj dualenergymicroctfunctionalimagingofprimarylungcancerinmiceusinggoldandiodinenanoparticlecontrastagentsavalidationstudy
AT ghaghadaketan dualenergymicroctfunctionalimagingofprimarylungcancerinmiceusinggoldandiodinenanoparticlecontrastagentsavalidationstudy
AT kirschdavidg dualenergymicroctfunctionalimagingofprimarylungcancerinmiceusinggoldandiodinenanoparticlecontrastagentsavalidationstudy
AT westjenniferl dualenergymicroctfunctionalimagingofprimarylungcancerinmiceusinggoldandiodinenanoparticlecontrastagentsavalidationstudy
AT badeacristiant dualenergymicroctfunctionalimagingofprimarylungcancerinmiceusinggoldandiodinenanoparticlecontrastagentsavalidationstudy