Cargando…

Light chain editors of anti-DNA receptors in human B cells

Receptor editing is a mechanism of self-tolerance used in newly generated B cells. The expressed heavy (H) or light (L) chain of an autoreactive receptor is replaced by upstream V genes which eliminate or modify autoreactivity. Editing of anti-DNA receptors has been characterized in anti-DNA transge...

Descripción completa

Detalles Bibliográficos
Autores principales: Kalinina, Olga, Wang, Yue, Sia, Kevin, Radic, Marko, Cazenave, Pierre-André, Weigert, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3920568/
https://www.ncbi.nlm.nih.gov/pubmed/24470445
http://dx.doi.org/10.1084/jem.20122340
Descripción
Sumario:Receptor editing is a mechanism of self-tolerance used in newly generated B cells. The expressed heavy (H) or light (L) chain of an autoreactive receptor is replaced by upstream V genes which eliminate or modify autoreactivity. Editing of anti-DNA receptors has been characterized in anti-DNA transgenic mouse models including 3H9, 3H9/56R, and their revertant 3H9GL. Certain L chains, termed editors, rescue anti-DNA B cells by neutralizing or modifying DNA binding of the H chain. This editing mechanism acts on the natural H chain repertoire; endogenous H chains with anti-DNA features are expressed primarily in combination with editor L chains. We ask whether a similar set of L chains exists in the human repertoire, and if so, do they edit H chains with anti-DNA signatures? We compared the protein sequences of mouse editors to all human L chains and found several human L chains similar to mouse editors. These L chains diminish or veto anti-DNA binding when expressed with anti-DNA H chains. The human H chains expressed with these L chains also have relatively high arginine (Arg) content in the H chain complementarity determining region (H3), suggesting that receptor editing plays a role in establishing tolerance to DNA in humans.