Cargando…
Gateway-Assisted Vector Construction to Facilitate Expression of Foreign Proteins in the Chloroplast of Single Celled Algae
With a rising world population, demand will increase for food, energy and high value products. Renewable production systems, including photosynthetic microalgal biotechnologies, can produce biomass for foods, fuels and chemical feedstocks and in parallel allow the production of high value protein pr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3921121/ https://www.ncbi.nlm.nih.gov/pubmed/24523866 http://dx.doi.org/10.1371/journal.pone.0086841 |
Sumario: | With a rising world population, demand will increase for food, energy and high value products. Renewable production systems, including photosynthetic microalgal biotechnologies, can produce biomass for foods, fuels and chemical feedstocks and in parallel allow the production of high value protein products, including recombinant proteins. Such high value recombinant proteins offer important economic benefits during startup of industrial scale algal biomass and biofuel production systems, but the limited markets for individual recombinant proteins will require a high throughput pipeline for cloning and expression in microalgae, which is currently lacking, since genetic engineering of microalgae is currently complex and laborious. We have introduced the recombination based Gateway® system into the construction process of chloroplast transformation vectors for microalgae. This simplifies the vector construction and allows easy, fast and flexible vector design for the high efficiency protein production in microalgae, a key step in developing such expression pipelines. |
---|