Cargando…

Progress in the Discovery of Treatments for C. difficile Infection: A Clinical and Medicinal Chemistry Review

Clostridium difficile is an anaerobic, Gram-positive pathogen that causes C. difficile infection, which results in significant morbidity and mortality. The incidence of C. difficile infection in developed countries has become increasingly high due to the emergence of newer epidemic strains, a growin...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsutsumi, Lissa S., Owusu, Yaw B., Hurdle, Julian G., Sun, Dianqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bentham Science Publishers 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3921470/
https://www.ncbi.nlm.nih.gov/pubmed/24236721
http://dx.doi.org/10.2174/1568026613666131113154753
Descripción
Sumario:Clostridium difficile is an anaerobic, Gram-positive pathogen that causes C. difficile infection, which results in significant morbidity and mortality. The incidence of C. difficile infection in developed countries has become increasingly high due to the emergence of newer epidemic strains, a growing elderly population, extensive use of broad spectrum antibiotics, and limited therapies for this diarrheal disease. Because treatment options currently available for C. difficile infection have some drawbacks, including cost, promotion of resistance, and selectivity problems, new agents are urgently needed to address these challenges. This review article focuses on two parts: the first part summarizes current clinical treatment strategies and agents under clinical development for C. difficile infection; the second part reviews newly reported anti-difficile agents that have been evaluated or reevaluated in the last five years and are in the early stages of drug discovery and development. Antibiotics are divided into natural product inspired and synthetic small molecule compounds that may have the potential to be more efficacious than currently approved treatments. This includes potency, selectivity, reduced cytotoxicity, and novel modes of action to prevent resistance.