Cargando…
A medium hyperglycosylated podocalyxin enables noninvasive and quantitative detection of tumorigenic human pluripotent stem cells
While human pluripotent stem cells are attractive sources for cell-replacement therapies, a major concern remains regarding their tumorigenic potential. Thus, safety assessment of human pluripotent stem cell-based products in terms of tumorigenicity is critical. Previously we have identified a pluri...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3921628/ https://www.ncbi.nlm.nih.gov/pubmed/24518842 http://dx.doi.org/10.1038/srep04069 |
Sumario: | While human pluripotent stem cells are attractive sources for cell-replacement therapies, a major concern remains regarding their tumorigenic potential. Thus, safety assessment of human pluripotent stem cell-based products in terms of tumorigenicity is critical. Previously we have identified a pluripotent stem cell-specific lectin probe rBC2LCN recognizing hyperglycosylated podocalyxin as a cell surface ligand. Here we demonstrate that hyperglycosylated podocalyxin is secreted from human pluripotent stem cells into cell culture supernatants. We establish a sandwich assay system, named the GlycoStem test, targeting the soluble hyperglycosylated podocalyxin using rBC2LCN. The GlycoStem test is sufficiently sensitive and quantitative to detect residual human pluripotent stem cells. This work provides a proof of concept for the noninvasive and quantitative detection of tumorigenic human pluripotent stem cells using cell culture supernatants. The developed method should increase the safety of human pluripotent stem cell-based cell therapies. |
---|