Cargando…
A Stochastic Restricted Principal Components Regression Estimator in the Linear Model
We propose a new estimator to combat the multicollinearity in the linear model when there are stochastic linear restrictions on the regression coefficients. The new estimator is constructed by combining the ordinary mixed estimator (OME) and the principal components regression (PCR) estimator, which...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3921953/ https://www.ncbi.nlm.nih.gov/pubmed/24587714 http://dx.doi.org/10.1155/2014/231506 |
_version_ | 1782303384592711680 |
---|---|
author | He, Daojiang Wu, Yan |
author_facet | He, Daojiang Wu, Yan |
author_sort | He, Daojiang |
collection | PubMed |
description | We propose a new estimator to combat the multicollinearity in the linear model when there are stochastic linear restrictions on the regression coefficients. The new estimator is constructed by combining the ordinary mixed estimator (OME) and the principal components regression (PCR) estimator, which is called the stochastic restricted principal components (SRPC) regression estimator. Necessary and sufficient conditions for the superiority of the SRPC estimator over the OME and the PCR estimator are derived in the sense of the mean squared error matrix criterion. Finally, we give a numerical example and a Monte Carlo study to illustrate the performance of the proposed estimator. |
format | Online Article Text |
id | pubmed-3921953 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-39219532014-03-02 A Stochastic Restricted Principal Components Regression Estimator in the Linear Model He, Daojiang Wu, Yan ScientificWorldJournal Research Article We propose a new estimator to combat the multicollinearity in the linear model when there are stochastic linear restrictions on the regression coefficients. The new estimator is constructed by combining the ordinary mixed estimator (OME) and the principal components regression (PCR) estimator, which is called the stochastic restricted principal components (SRPC) regression estimator. Necessary and sufficient conditions for the superiority of the SRPC estimator over the OME and the PCR estimator are derived in the sense of the mean squared error matrix criterion. Finally, we give a numerical example and a Monte Carlo study to illustrate the performance of the proposed estimator. Hindawi Publishing Corporation 2014-01-23 /pmc/articles/PMC3921953/ /pubmed/24587714 http://dx.doi.org/10.1155/2014/231506 Text en Copyright © 2014 D. He and Y. Wu. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article He, Daojiang Wu, Yan A Stochastic Restricted Principal Components Regression Estimator in the Linear Model |
title | A Stochastic Restricted Principal Components Regression Estimator in the Linear Model |
title_full | A Stochastic Restricted Principal Components Regression Estimator in the Linear Model |
title_fullStr | A Stochastic Restricted Principal Components Regression Estimator in the Linear Model |
title_full_unstemmed | A Stochastic Restricted Principal Components Regression Estimator in the Linear Model |
title_short | A Stochastic Restricted Principal Components Regression Estimator in the Linear Model |
title_sort | stochastic restricted principal components regression estimator in the linear model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3921953/ https://www.ncbi.nlm.nih.gov/pubmed/24587714 http://dx.doi.org/10.1155/2014/231506 |
work_keys_str_mv | AT hedaojiang astochasticrestrictedprincipalcomponentsregressionestimatorinthelinearmodel AT wuyan astochasticrestrictedprincipalcomponentsregressionestimatorinthelinearmodel AT hedaojiang stochasticrestrictedprincipalcomponentsregressionestimatorinthelinearmodel AT wuyan stochasticrestrictedprincipalcomponentsregressionestimatorinthelinearmodel |