Cargando…

A Stochastic Restricted Principal Components Regression Estimator in the Linear Model

We propose a new estimator to combat the multicollinearity in the linear model when there are stochastic linear restrictions on the regression coefficients. The new estimator is constructed by combining the ordinary mixed estimator (OME) and the principal components regression (PCR) estimator, which...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Daojiang, Wu, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3921953/
https://www.ncbi.nlm.nih.gov/pubmed/24587714
http://dx.doi.org/10.1155/2014/231506
_version_ 1782303384592711680
author He, Daojiang
Wu, Yan
author_facet He, Daojiang
Wu, Yan
author_sort He, Daojiang
collection PubMed
description We propose a new estimator to combat the multicollinearity in the linear model when there are stochastic linear restrictions on the regression coefficients. The new estimator is constructed by combining the ordinary mixed estimator (OME) and the principal components regression (PCR) estimator, which is called the stochastic restricted principal components (SRPC) regression estimator. Necessary and sufficient conditions for the superiority of the SRPC estimator over the OME and the PCR estimator are derived in the sense of the mean squared error matrix criterion. Finally, we give a numerical example and a Monte Carlo study to illustrate the performance of the proposed estimator.
format Online
Article
Text
id pubmed-3921953
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-39219532014-03-02 A Stochastic Restricted Principal Components Regression Estimator in the Linear Model He, Daojiang Wu, Yan ScientificWorldJournal Research Article We propose a new estimator to combat the multicollinearity in the linear model when there are stochastic linear restrictions on the regression coefficients. The new estimator is constructed by combining the ordinary mixed estimator (OME) and the principal components regression (PCR) estimator, which is called the stochastic restricted principal components (SRPC) regression estimator. Necessary and sufficient conditions for the superiority of the SRPC estimator over the OME and the PCR estimator are derived in the sense of the mean squared error matrix criterion. Finally, we give a numerical example and a Monte Carlo study to illustrate the performance of the proposed estimator. Hindawi Publishing Corporation 2014-01-23 /pmc/articles/PMC3921953/ /pubmed/24587714 http://dx.doi.org/10.1155/2014/231506 Text en Copyright © 2014 D. He and Y. Wu. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
He, Daojiang
Wu, Yan
A Stochastic Restricted Principal Components Regression Estimator in the Linear Model
title A Stochastic Restricted Principal Components Regression Estimator in the Linear Model
title_full A Stochastic Restricted Principal Components Regression Estimator in the Linear Model
title_fullStr A Stochastic Restricted Principal Components Regression Estimator in the Linear Model
title_full_unstemmed A Stochastic Restricted Principal Components Regression Estimator in the Linear Model
title_short A Stochastic Restricted Principal Components Regression Estimator in the Linear Model
title_sort stochastic restricted principal components regression estimator in the linear model
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3921953/
https://www.ncbi.nlm.nih.gov/pubmed/24587714
http://dx.doi.org/10.1155/2014/231506
work_keys_str_mv AT hedaojiang astochasticrestrictedprincipalcomponentsregressionestimatorinthelinearmodel
AT wuyan astochasticrestrictedprincipalcomponentsregressionestimatorinthelinearmodel
AT hedaojiang stochasticrestrictedprincipalcomponentsregressionestimatorinthelinearmodel
AT wuyan stochasticrestrictedprincipalcomponentsregressionestimatorinthelinearmodel