Cargando…
A Stochastic Restricted Principal Components Regression Estimator in the Linear Model
We propose a new estimator to combat the multicollinearity in the linear model when there are stochastic linear restrictions on the regression coefficients. The new estimator is constructed by combining the ordinary mixed estimator (OME) and the principal components regression (PCR) estimator, which...
Autores principales: | He, Daojiang, Wu, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3921953/ https://www.ncbi.nlm.nih.gov/pubmed/24587714 http://dx.doi.org/10.1155/2014/231506 |
Ejemplares similares
-
Principal component regression for crop yield estimation
por: Suryanarayana, T M V, et al.
Publicado: (2016) -
A new kind of stochastic restricted biased estimator for logistic regression model
por: Alheety, M. I., et al.
Publicado: (2020) -
Stochastic convex sparse principal component analysis
por: Baytas, Inci M., et al.
Publicado: (2016) -
Stochastic Lanczos estimation of genomic variance components for linear mixed-effects models
por: Border, Richard, et al.
Publicado: (2019) -
Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices
por: Meyer, Karin, et al.
Publicado: (2005)