Cargando…
Generalized Ulam-Hyers Stability, Well-Posedness, and Limit Shadowing of Fixed Point Problems for α-β-Contraction Mapping in Metric Spaces
We study the generalized Ulam-Hyers stability, the well-posedness, and the limit shadowing of the fixed point problem for new type of generalized contraction mapping, the so-called α-β-contraction mapping. Our results in this paper are generalized and unify several results in the literature as the r...
Autor principal: | Sintunavarat, Wutiphol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922007/ https://www.ncbi.nlm.nih.gov/pubmed/24592174 http://dx.doi.org/10.1155/2014/569174 |
Ejemplares similares
-
Fixed Point Theorems for Generalized α-β-Weakly Contraction Mappings in Metric Spaces and Applications
por: Latif, Abdul, et al.
Publicado: (2014) -
Inclusions in a Single Variable in Ultrametric Spaces and Hyers-Ulam Stability
por: Piszczek, Magdalena
Publicado: (2013) -
Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis
por: Jung, Soon-Mo
Publicado: (2011) -
Generalized β−Hyers–Ulam–Rassias Stability of Impulsive Difference Equations
por: Almalki, Yahya, et al.
Publicado: (2022) -
Stability of some generalized fractional differential equations in the sense of Ulam–Hyers–Rassias
por: Makhlouf, Abdellatif Ben, et al.
Publicado: (2023)