Cargando…
Event-driven contrastive divergence for spiking neuromorphic systems
Restricted Boltzmann Machines (RBMs) and Deep Belief Networks have been demonstrated to perform efficiently in a variety of applications, such as dimensionality reduction, feature learning, and classification. Their implementation on neuromorphic hardware platforms emulating large-scale networks of...
Autores principales: | Neftci, Emre, Das, Srinjoy, Pedroni, Bruno, Kreutz-Delgado, Kenneth, Cauwenberghs, Gert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922083/ https://www.ncbi.nlm.nih.gov/pubmed/24574952 http://dx.doi.org/10.3389/fnins.2013.00272 |
Ejemplares similares
-
Event-driven contrastive divergence: neural sampling foundations
por: Neftci, Emre, et al.
Publicado: (2015) -
Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines
por: Neftci, Emre O., et al.
Publicado: (2017) -
Memory-Efficient Synaptic Connectivity for Spike-Timing- Dependent Plasticity
por: Pedroni, Bruno U., et al.
Publicado: (2019) -
Hierarchical Network Connectivity and Partitioning for Reconfigurable Large-Scale Neuromorphic Systems
por: Mysore, Nishant, et al.
Publicado: (2022) -
Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines
por: Neftci, Emre O., et al.
Publicado: (2016)