Cargando…

Cross-sectional and longitudinal associations of circulating omega-3 and omega-6 fatty acids with lipoprotein particle concentrations and sizes: population-based cohort study with 6-year follow-up

BACKGROUND: Cross-sectional studies have suggested that serum omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) are related to favorable lipoprotein particle concentrations. We explored the associations of serum n-3 and n-6 PUFAs with lipoprotein particle concentrations and sizes i...

Descripción completa

Detalles Bibliográficos
Autores principales: Mäntyselkä, Pekka, Niskanen, Leo, Kautiainen, Hannu, Saltevo, Juha, Würtz, Peter, Soininen, Pasi, Kangas, Antti J, Ala-Korpela, Mika, Vanhala, Mauno
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922432/
https://www.ncbi.nlm.nih.gov/pubmed/24507090
http://dx.doi.org/10.1186/1476-511X-13-28
Descripción
Sumario:BACKGROUND: Cross-sectional studies have suggested that serum omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) are related to favorable lipoprotein particle concentrations. We explored the associations of serum n-3 and n-6 PUFAs with lipoprotein particle concentrations and sizes in a general population cohort at baseline and after 6 years. FINDINGS: The cohort included 665 adults (274 men) with a 6-year follow-up. Nutritional counseling was given at baseline. Serum n-3 and n-6 PUFAs and lipoprotein particle concentrations and the mean particle sizes of VLDL, LDL, and HDL were quantified by nuclear magnetic resonance (NMR) spectroscopy for all baseline and follow-up samples at the same time. Concentrations of n-3 and n-6 PUFAs were expressed relative to total fatty acids. At baseline, n-3 PUFAs were not associated with lipoprotein particle concentrations. A weak negative association was observed for VLDL (P = 0.021) and positive for HDL (P = 0.011) particle size. n-6 PUFA was negatively associated with VLDL particle concentration and positively with LDL (P < 0.001) and HDL particle size (P < 0.001). The 6-year change in n-3 PUFA correlated positively with the change in particle size for HDL and LDL lipoproteins but negatively with VLDL particle size. An increase in 6-year levels of n-6 PUFAs was negatively correlated with the change in VLDL particle concentration and size, and positively with LDL particle size. CONCLUSION: Change in circulating levels of both n-3 and n-6 PUFAs, relative to total fatty acids, during 6 years of follow-up are associated with changes in lipoprotein particle size and concentrations at the population level.