Cargando…

Deficiency of the BiP cochaperone ERdj4 causes constitutive endoplasmic reticulum stress and metabolic defects

Endoplasmic reticulum–localized DnaJ 4 (ERdj4) is an immunoglobulin-binding protein (BiP) cochaperone and component of the endoplasmic reticulum–associated degradation (ERAD) pathway that functions to remove unfolded/misfolded substrates from the ER lumen under conditions of ER stress. To elucidate...

Descripción completa

Detalles Bibliográficos
Autores principales: Fritz, Jill M., Dong, Mei, Apsley, Karen S., Martin, Emily P., Na, Cheng-Lun, Sitaraman, Sneha, Weaver, Timothy E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923636/
https://www.ncbi.nlm.nih.gov/pubmed/24336520
http://dx.doi.org/10.1091/mbc.E13-06-0319
Descripción
Sumario:Endoplasmic reticulum–localized DnaJ 4 (ERdj4) is an immunoglobulin-binding protein (BiP) cochaperone and component of the endoplasmic reticulum–associated degradation (ERAD) pathway that functions to remove unfolded/misfolded substrates from the ER lumen under conditions of ER stress. To elucidate the function of ERdj4 in vivo, we disrupted the ERdj4 locus using gene trap (GT) mutagenesis, leading to hypomorphic expression of ERdj4 in mice homozygous for the trapped allele (ERdj4(GT/GT)). Approximately half of ERdj4(GT/GT) mice died perinatally associated with fetal growth restriction, reduced hepatic glycogen stores, and hypoglycemia. Surviving adult mice exhibited evidence of constitutive ER stress in multiple cells/tissues, including fibroblasts, lung, kidney, salivary gland, and pancreas. Elevated ER stress in pancreatic β cells of ERdj4(GT/GT) mice was associated with β cell loss, hypoinsulinemia, and glucose intolerance. Collectively these results suggest an important role for ERdj4 in maintaining ER homeostasis during normal fetal growth and postnatal adaptation to metabolic stress.