Cargando…

Simultaneous Inhibition of the HGF/MET and Erk1/2 Pathways Affect Uveal Melanoma Cell Growth and Migration

PURPOSE: Nearly all primary uveal melanoma (UM) that metastasize involve the liver. Hepatocyte growth factor (HGF) is proposed to be an important microenvironmental element in attracting/supporting UM metastasis through activation of MET. The majority (>85%) of UM express mutations in the G-alpha...

Descripción completa

Detalles Bibliográficos
Autores principales: Chattopadhyay, Chandrani, Grimm, Elizabeth A., Woodman, Scott E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923717/
https://www.ncbi.nlm.nih.gov/pubmed/24551032
http://dx.doi.org/10.1371/journal.pone.0083957
Descripción
Sumario:PURPOSE: Nearly all primary uveal melanoma (UM) that metastasize involve the liver. Hepatocyte growth factor (HGF) is proposed to be an important microenvironmental element in attracting/supporting UM metastasis through activation of MET. The majority (>85%) of UM express mutations in the G-alpha proteins, that drive the MEK-ERK1/2 pathway. Thus, we proposed that the combination of MET and MEK inhibition would inhibit the growth and migration of G-alpha protein mutant versus non-mutant UM cells. METHODS: Western-blots demonstrated the relative protein levels of ERK1/2 and MET in UM cells. Cells were treated with the small molecule inhibitors AZD6244 (MEKi) and/or MK-8033 (METi) and downstream markers evaluated. Further studies determined the effect of combination MEKi and METi treatment on cell growth, apoptosis and migration. RESULTS: All G-alpha protein mutant UM cell lines express MET mRNA and protein. The level of mRNA expression correlates with protein expression. MEKi, but not METi treatment results in markedly reduced ERK1/2 phosphorylation. Either MEKi or METi treatment alone results in reduced cell proliferation, but only modest induction of apoptosis. The combination MEKi+METi results in significant reduction of proliferation in G-alpha protein mutant cells. UM cell migration was blocked by METi, but not MEKi treatment. CONCLUSIONS: MET protein expression showed no correlation with G-alpha protein mutation status. Combining MEKi with METi treatment has added benefit to either treatment alone in reducing G-alpha protein mutant UM cell growth. Combining METi with MEKi treatment adds the effect of limiting uveal melanoma cell migration.