Cargando…

Loss of Drosophila Ataxin-7, a SAGA subunit, reduces H2B ubiquitination and leads to neural and retinal degeneration

The Spt–Ada–Gcn5–acetyltransferase (SAGA) chromatin-modifying complex possesses acetyltransferase and deubiquitinase activities. Within this modular complex, Ataxin-7 anchors the deubiquitinase activity to the larger complex. Here we identified and characterized Drosophila Ataxin-7 and found that re...

Descripción completa

Detalles Bibliográficos
Autores principales: Mohan, Ryan D., Dialynas, George, Weake, Vikki M., Liu, Jianqi, Martin-Brown, Skylar, Florens, Laurence, Washburn, Michael P., Workman, Jerry L., Abmayr, Susan M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923968/
https://www.ncbi.nlm.nih.gov/pubmed/24493646
http://dx.doi.org/10.1101/gad.225151.113
Descripción
Sumario:The Spt–Ada–Gcn5–acetyltransferase (SAGA) chromatin-modifying complex possesses acetyltransferase and deubiquitinase activities. Within this modular complex, Ataxin-7 anchors the deubiquitinase activity to the larger complex. Here we identified and characterized Drosophila Ataxin-7 and found that reduction of Ataxin-7 protein results in loss of components from the SAGA complex. In contrast to yeast, where loss of Ataxin-7 inactivates the deubiquitinase and results in increased H2B ubiquitination, loss of Ataxin-7 results in decreased H2B ubiquitination and H3K9 acetylation without affecting other histone marks. Interestingly, the effect on ubiquitination was conserved in human cells, suggesting a novel mechanism regulating histone deubiquitination in higher organisms. Consistent with this mechanism in vivo, we found that a recombinant deubiquitinase module is active in the absence of Ataxin-7 in vitro. When we examined the consequences of reduced Ataxin-7 in vivo, we found that flies exhibited pronounced neural and retinal degeneration, impaired movement, and early lethality.