Cargando…

The superior catalytic CO oxidation capacity of a Cr-phthalocyanine porous sheet

Two-dimensional organometallic sheets containing regularly and separately distributed transition atoms (TMs) have received tremendous attentions due to their flexibility in synthesis, well-defined geometry and the promising applications in hydrogen storage, electronic circuits, quantum Hall effect,...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yawei, Sun, Qiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3924217/
https://www.ncbi.nlm.nih.gov/pubmed/24526163
http://dx.doi.org/10.1038/srep04098
Descripción
Sumario:Two-dimensional organometallic sheets containing regularly and separately distributed transition atoms (TMs) have received tremendous attentions due to their flexibility in synthesis, well-defined geometry and the promising applications in hydrogen storage, electronic circuits, quantum Hall effect, and spintronics. Here for the first time we present a study on the superior catalytic CO oxidation capacity of a Cr-phthalocyanine porous sheet proceeding first via Langmuir-Hinshelwood (LH) mechanism and then via Eley-Rideal (ER) mechanism. Compared to the noble metal based catalysts or graphene supported catalysts, our studied system has following unique features: without poisoning effect and clustering problem, having comparable reaction energy barrier for low-temperature oxidation, and low cost for large-scale catalytic CO oxidation in industry.