Cargando…
Disease Mapping and Regression with Count Data in the Presence of Overdispersion and Spatial Autocorrelation: A Bayesian Model Averaging Approach
This paper applies the generalised linear model for modelling geographical variation to esophageal cancer incidence data in the Caspian region of Iran. The data have a complex and hierarchical structure that makes them suitable for hierarchical analysis using Bayesian techniques, but with care requi...
Autores principales: | Mohebbi, Mohammadreza, Wolfe, Rory, Forbes, Andrew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3924480/ https://www.ncbi.nlm.nih.gov/pubmed/24413702 http://dx.doi.org/10.3390/ijerph110100883 |
Ejemplares similares
-
A poisson regression approach for modelling spatial autocorrelation between geographically referenced observations
por: Mohebbi, Mohammadreza, et al.
Publicado: (2011) -
A Bayesian Approach to Account for Misclassification and Overdispersion in Count Data
por: Wu, Wenqi, et al.
Publicado: (2015) -
A Bayesian generalized random regression model for estimating heritability using overdispersed count data
por: Mair, Colette, et al.
Publicado: (2015) -
Negative Binomial Regression: Understanding and Modeling Overdispersed Count Data
por: Hilbe, Joseph M
Publicado: (2011) -
Dirichlet negative multinomial regression for overdispersed correlated count
data
por: Farewell, Daniel M., et al.
Publicado: (2013)