Cargando…
Predicting BCI Subject Performance Using Probabilistic Spatio-Temporal Filters
Recently, spatio-temporal filtering to enhance decoding for Brain-Computer-Interfacing (BCI) has become increasingly popular. In this work, we discuss a novel, fully Bayesian–and thereby probabilistic–framework, called Bayesian Spatio-Spectral Filter Optimization (BSSFO) and apply it to a large data...
Autores principales: | Suk, Heung-Il, Fazli, Siamac, Mehnert, Jan, Müller, Klaus-Robert, Lee, Seong-Whan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3925079/ https://www.ncbi.nlm.nih.gov/pubmed/24551050 http://dx.doi.org/10.1371/journal.pone.0087056 |
Ejemplares similares
-
EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy
por: Lee, Min-Ho, et al.
Publicado: (2019) -
The Berlin Brain–Computer Interface: Non-Medical Uses of BCI Technology
por: Blankertz, Benjamin, et al.
Publicado: (2010) -
An Efficient ERP-Based Brain-Computer Interface Using Random Set Presentation and Face Familiarity
por: Yeom, Seul-Ki, et al.
Publicado: (2014) -
Multivariate Kalman filtering for spatio-temporal processes
por: Ferreira, Guillermo, et al.
Publicado: (2022) -
Spatio-temporal dynamics of multimodal EEG-fNIRS signals in the loss and recovery of consciousness under sedation using midazolam and propofol
por: Yeom, Seul-Ki, et al.
Publicado: (2017)