Cargando…
Inferring Nonlinear Gene Regulatory Networks from Gene Expression Data Based on Distance Correlation
Nonlinear dependence is general in regulation mechanism of gene regulatory networks (GRNs). It is vital to properly measure or test nonlinear dependence from real data for reconstructing GRNs and understanding the complex regulatory mechanisms within the cellular system. A recently developed measure...
Autores principales: | Guo, Xiaobo, Zhang, Ye, Hu, Wenhao, Tan, Haizhu, Wang, Xueqin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3925093/ https://www.ncbi.nlm.nih.gov/pubmed/24551058 http://dx.doi.org/10.1371/journal.pone.0087446 |
Ejemplares similares
-
Inferring a Transcriptional Regulatory Network from Gene Expression Data Using Nonlinear Manifold Embedding
por: Zare, Hossein, et al.
Publicado: (2011) -
Ensemble Inference and Inferability of Gene Regulatory Networks
por: Ud-Dean, S. M. Minhaz, et al.
Publicado: (2014) -
Integration of Steady-State and Temporal Gene Expression Data for the Inference of Gene Regulatory Networks
por: Wang, Yi Kan, et al.
Publicado: (2013) -
Data Integration for Microarrays: Enhanced Inference for Gene Regulatory Networks
por: Sîrbu, Alina, et al.
Publicado: (2015) -
Supervised inference of gene-regulatory networks
por: To, Cuong C, et al.
Publicado: (2008)