Cargando…
Functional Relevance of AcrB Trimerization in Pump Assembly and Substrate Binding
AcrB is a multidrug transporter in the inner membrane of Escherichia coli. It is an obligate homotrimer and forms a tripartite efflux complex with AcrA and TolC. AcrB is the engine of the efflux machinery and determines substrate specificity. Active efflux depends on several functional features incl...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3925222/ https://www.ncbi.nlm.nih.gov/pubmed/24551234 http://dx.doi.org/10.1371/journal.pone.0089143 |
_version_ | 1782303832866291712 |
---|---|
author | Lu, Wei Zhong, Meng Chai, Qian Wang, Zhaoshuai Yu, Linliang Wei, Yinan |
author_facet | Lu, Wei Zhong, Meng Chai, Qian Wang, Zhaoshuai Yu, Linliang Wei, Yinan |
author_sort | Lu, Wei |
collection | PubMed |
description | AcrB is a multidrug transporter in the inner membrane of Escherichia coli. It is an obligate homotrimer and forms a tripartite efflux complex with AcrA and TolC. AcrB is the engine of the efflux machinery and determines substrate specificity. Active efflux depends on several functional features including proton translocation across the inner membrane through a proton relay pathway in the transmembrane domain of AcrB; substrate binding and migration through the substrate translocation pathway; the interaction of AcrB with AcrA and TolC; and the formation of AcrB homotrimer. Here we investigated two aspects of the inter-correlation between these functional features, the dependence of AcrA-AcrB interaction on AcrB trimerization, and the reliance of substrate binding and penetration on protein-protein interaction. Interaction between AcrA and AcrB was investigated through chemical crosslinking, and a previously established in vivo fluorescent labeling method was used to probe substrate binding. Our data suggested that dissociation of the AcrB trimer drastically decreased its interaction with AcrA. In addition, while substrate binding with AcrB seemed to be irrelevant to the presence or absence of AcrA and TolC, the capability of trimerization and conduction of proton influx did affect substrate binding at selected sites along the substrate translocation pathway in AcrB. |
format | Online Article Text |
id | pubmed-3925222 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39252222014-02-18 Functional Relevance of AcrB Trimerization in Pump Assembly and Substrate Binding Lu, Wei Zhong, Meng Chai, Qian Wang, Zhaoshuai Yu, Linliang Wei, Yinan PLoS One Research Article AcrB is a multidrug transporter in the inner membrane of Escherichia coli. It is an obligate homotrimer and forms a tripartite efflux complex with AcrA and TolC. AcrB is the engine of the efflux machinery and determines substrate specificity. Active efflux depends on several functional features including proton translocation across the inner membrane through a proton relay pathway in the transmembrane domain of AcrB; substrate binding and migration through the substrate translocation pathway; the interaction of AcrB with AcrA and TolC; and the formation of AcrB homotrimer. Here we investigated two aspects of the inter-correlation between these functional features, the dependence of AcrA-AcrB interaction on AcrB trimerization, and the reliance of substrate binding and penetration on protein-protein interaction. Interaction between AcrA and AcrB was investigated through chemical crosslinking, and a previously established in vivo fluorescent labeling method was used to probe substrate binding. Our data suggested that dissociation of the AcrB trimer drastically decreased its interaction with AcrA. In addition, while substrate binding with AcrB seemed to be irrelevant to the presence or absence of AcrA and TolC, the capability of trimerization and conduction of proton influx did affect substrate binding at selected sites along the substrate translocation pathway in AcrB. Public Library of Science 2014-02-14 /pmc/articles/PMC3925222/ /pubmed/24551234 http://dx.doi.org/10.1371/journal.pone.0089143 Text en © 2014 Lu et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Lu, Wei Zhong, Meng Chai, Qian Wang, Zhaoshuai Yu, Linliang Wei, Yinan Functional Relevance of AcrB Trimerization in Pump Assembly and Substrate Binding |
title | Functional Relevance of AcrB Trimerization in Pump Assembly and Substrate Binding |
title_full | Functional Relevance of AcrB Trimerization in Pump Assembly and Substrate Binding |
title_fullStr | Functional Relevance of AcrB Trimerization in Pump Assembly and Substrate Binding |
title_full_unstemmed | Functional Relevance of AcrB Trimerization in Pump Assembly and Substrate Binding |
title_short | Functional Relevance of AcrB Trimerization in Pump Assembly and Substrate Binding |
title_sort | functional relevance of acrb trimerization in pump assembly and substrate binding |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3925222/ https://www.ncbi.nlm.nih.gov/pubmed/24551234 http://dx.doi.org/10.1371/journal.pone.0089143 |
work_keys_str_mv | AT luwei functionalrelevanceofacrbtrimerizationinpumpassemblyandsubstratebinding AT zhongmeng functionalrelevanceofacrbtrimerizationinpumpassemblyandsubstratebinding AT chaiqian functionalrelevanceofacrbtrimerizationinpumpassemblyandsubstratebinding AT wangzhaoshuai functionalrelevanceofacrbtrimerizationinpumpassemblyandsubstratebinding AT yulinliang functionalrelevanceofacrbtrimerizationinpumpassemblyandsubstratebinding AT weiyinan functionalrelevanceofacrbtrimerizationinpumpassemblyandsubstratebinding |