Cargando…

Genetic and morphometric divergence in threespine stickleback in the Chignik catchment, Alaska

Divergent selection pressures induced by different environmental conditions typically lead to variation in life history, behavior, and morphology. When populations are locally adapted to their current environment, selection may limit movement into novel sites, leading to neutral and adaptive genetic...

Descripción completa

Detalles Bibliográficos
Autores principales: Taugbøl, Annette, Junge, Claudia, Quinn, Thomas P, Herland, Anders, Vøllestad, Leif Asbjørn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3925378/
https://www.ncbi.nlm.nih.gov/pubmed/24558570
http://dx.doi.org/10.1002/ece3.918
Descripción
Sumario:Divergent selection pressures induced by different environmental conditions typically lead to variation in life history, behavior, and morphology. When populations are locally adapted to their current environment, selection may limit movement into novel sites, leading to neutral and adaptive genetic divergence in allopatric populations. Subsequently, divergence can be reinforced by development of pre-or postzygotic barriers to gene flow. The threespine stickleback, Gasterosteus aculeatus, is a primarily marine fish that has invaded freshwater repeatedly in postglacial times. After invasion, the established freshwater populations typically show rapid diversification of several traits as they become reproductively isolated from their ancestral marine population. In this study, we examine the genetic and morphometric differentiation between sticklebacks living in an open system comprising a brackish water lagoon, two freshwater lakes, and connecting rivers. By applying a set of microsatellite markers, we disentangled the genetic relationship of the individuals across the diverse environments and identified two genetic populations: one associated with brackish and the other with the freshwater environments. The “brackish” sticklebacks were larger and had a different body shape than those in freshwater. However, we found evidence for upstream migration from the brackish lagoon into the freshwater environments, as fish that were genetically and morphometrically similar to the lagoon fish were found in all freshwater sampling sites. Regardless, few F1-hybrids were identified, and it therefore appears that some pre-and/or postzygotic barriers to gene flow rather than geographic distance are causing the divergence in this system.