Cargando…
Constructing Better Classifier Ensemble Based on Weighted Accuracy and Diversity Measure
A weighted accuracy and diversity (WAD) method is presented, a novel measure used to evaluate the quality of the classifier ensemble, assisting in the ensemble selection task. The proposed measure is motivated by a commonly accepted hypothesis; that is, a robust classifier ensemble should not only b...
Autores principales: | Zeng, Xiaodong, Wong, Derek F., Chao, Lidia S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3925515/ https://www.ncbi.nlm.nih.gov/pubmed/24672402 http://dx.doi.org/10.1155/2014/961747 |
Ejemplares similares
-
A probabilistic classifier ensemble weighting scheme based on cross-validated accuracy estimates
por: Large, James, et al.
Publicado: (2019) -
Quantum ensembles of quantum classifiers
por: Schuld, Maria, et al.
Publicado: (2018) -
Ensemble of Heterogeneous Base Classifiers for Human Gait Recognition
por: Derlatka, Marcin, et al.
Publicado: (2023) -
Comparing radiomic classifiers and classifier ensembles for detection of peripheral zone prostate tumors on T2-weighted MRI: a multi-site study
por: Viswanath, Satish E., et al.
Publicado: (2019) -
Ensemble of a subset of kNN classifiers
por: Gul, Asma, et al.
Publicado: (2016)