Cargando…
Bit-Table Based Biclustering and Frequent Closed Itemset Mining in High-Dimensional Binary Data
During the last decade various algorithms have been developed and proposed for discovering overlapping clusters in high-dimensional data. The two most prominent application fields in this research, proposed independently, are frequent itemset mining (developed for market basket data) and biclusterin...
Autores principales: | Király, András, Gyenesei, Attila, Abonyi, János |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3925583/ https://www.ncbi.nlm.nih.gov/pubmed/24616651 http://dx.doi.org/10.1155/2014/870406 |
Ejemplares similares
-
DeBi: Discovering Differentially Expressed Biclusters using a Frequent Itemset Approach
por: Serin, Akdes, et al.
Publicado: (2011) -
SiBIC: A Web Server for Generating Gene Set Networks Based on Biclusters Obtained by Maximal Frequent Itemset Mining
por: Takahashi, Kei-ichiro, et al.
Publicado: (2013) -
A primer to frequent itemset mining for bioinformatics
por: Naulaerts, Stefan, et al.
Publicado: (2015) -
The Mining Algorithm of Maximum Frequent Itemsets Based on Frequent Pattern Tree
por: Mi, Xifeng
Publicado: (2022) -
Personalized Privacy-Preserving Frequent Itemset Mining Using Randomized Response
por: Sun, Chongjing, et al.
Publicado: (2014)