Cargando…

Why Do Tetrapropylammonium Chloride and Sulphate Salts Destabilize the Native State of Globular Proteins?

It has recently been shown that aqueous solutions of tetrapropylammonium chloride and sulphate salts destabilize the folded conformation of Trp-peptides (Dempsey et al., 2011). This result is rationalized by the application of a statistical thermodynamic approach (Graziano, 2010). It is shown that t...

Descripción completa

Detalles Bibliográficos
Autor principal: Graziano, Giuseppe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3925590/
https://www.ncbi.nlm.nih.gov/pubmed/24616650
http://dx.doi.org/10.1155/2014/870106
Descripción
Sumario:It has recently been shown that aqueous solutions of tetrapropylammonium chloride and sulphate salts destabilize the folded conformation of Trp-peptides (Dempsey et al., 2011). This result is rationalized by the application of a statistical thermodynamic approach (Graziano, 2010). It is shown that the magnitude of the solvent-excluded volume effect, the main contribution for the native state stability, decreases in both aqueous 2 M TPACl solution and aqueous 1 M TPA(2)SO(4) solution. This happens because TPA(+) ions are so large in size and interact so weakly with water molecules, due to their very low charge density, to be able to counteract the electrostrictive effect of chloride and sulphate ions on the water structure, so that the density of their aqueous solutions is smaller or only slightly larger than that of water.