Cargando…
ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa
BACKGROUND: Divergence in gene regulation has emerged as a key mechanism underlying species differentiation. Comparative analysis of co-expression networks across species can reveal conservation and divergence in the regulation of genes. RESULTS: We inferred co-expression networks of A. thaliana, Po...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3925997/ https://www.ncbi.nlm.nih.gov/pubmed/24498971 http://dx.doi.org/10.1186/1471-2164-15-106 |
_version_ | 1782303929639370752 |
---|---|
author | Netotea, Sergiu Sundell, David Street, Nathaniel R Hvidsten, Torgeir R |
author_facet | Netotea, Sergiu Sundell, David Street, Nathaniel R Hvidsten, Torgeir R |
author_sort | Netotea, Sergiu |
collection | PubMed |
description | BACKGROUND: Divergence in gene regulation has emerged as a key mechanism underlying species differentiation. Comparative analysis of co-expression networks across species can reveal conservation and divergence in the regulation of genes. RESULTS: We inferred co-expression networks of A. thaliana, Populus spp. and O. sativa using state-of-the-art methods based on mutual information and context likelihood of relatedness, and conducted a comprehensive comparison of these networks across a range of co-expression thresholds. In addition to quantifying gene-gene link and network neighbourhood conservation, we also applied recent advancements in network analysis to do cross-species comparisons of network properties such as scale free characteristics and gene centrality as well as network motifs. We found that in all species the networks emerged as scale free only above a certain co-expression threshold, and that the high-centrality genes upholding this organization tended to be conserved. Network motifs, in particular the feed-forward loop, were found to be significantly enriched in specific functional subnetworks but where much less conserved across species than gene centrality. Although individual gene-gene co-expression had massively diverged, up to ~80% of the genes still had a significantly conserved network neighbourhood. For genes with multiple predicted orthologs, about half had one ortholog with conserved regulation and another ortholog with diverged or non-conserved regulation. Furthermore, the most sequence similar ortholog was not the one with the most conserved gene regulation in over half of the cases. CONCLUSIONS: We have provided a comprehensive analysis of gene regulation evolution in plants and built a web tool for Comparative analysis of Plant co-Expression networks (ComPlEx, http://complex.plantgenie.org/). The tool can be particularly useful for identifying the ortholog with the most conserved regulation among several sequence-similar alternatives and can thus be of practical importance in e.g. finding candidate genes for perturbation experiments. |
format | Online Article Text |
id | pubmed-3925997 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-39259972014-02-18 ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa Netotea, Sergiu Sundell, David Street, Nathaniel R Hvidsten, Torgeir R BMC Genomics Research Article BACKGROUND: Divergence in gene regulation has emerged as a key mechanism underlying species differentiation. Comparative analysis of co-expression networks across species can reveal conservation and divergence in the regulation of genes. RESULTS: We inferred co-expression networks of A. thaliana, Populus spp. and O. sativa using state-of-the-art methods based on mutual information and context likelihood of relatedness, and conducted a comprehensive comparison of these networks across a range of co-expression thresholds. In addition to quantifying gene-gene link and network neighbourhood conservation, we also applied recent advancements in network analysis to do cross-species comparisons of network properties such as scale free characteristics and gene centrality as well as network motifs. We found that in all species the networks emerged as scale free only above a certain co-expression threshold, and that the high-centrality genes upholding this organization tended to be conserved. Network motifs, in particular the feed-forward loop, were found to be significantly enriched in specific functional subnetworks but where much less conserved across species than gene centrality. Although individual gene-gene co-expression had massively diverged, up to ~80% of the genes still had a significantly conserved network neighbourhood. For genes with multiple predicted orthologs, about half had one ortholog with conserved regulation and another ortholog with diverged or non-conserved regulation. Furthermore, the most sequence similar ortholog was not the one with the most conserved gene regulation in over half of the cases. CONCLUSIONS: We have provided a comprehensive analysis of gene regulation evolution in plants and built a web tool for Comparative analysis of Plant co-Expression networks (ComPlEx, http://complex.plantgenie.org/). The tool can be particularly useful for identifying the ortholog with the most conserved regulation among several sequence-similar alternatives and can thus be of practical importance in e.g. finding candidate genes for perturbation experiments. BioMed Central 2014-02-06 /pmc/articles/PMC3925997/ /pubmed/24498971 http://dx.doi.org/10.1186/1471-2164-15-106 Text en Copyright © 2014 Netotea et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Netotea, Sergiu Sundell, David Street, Nathaniel R Hvidsten, Torgeir R ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa |
title | ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa |
title_full | ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa |
title_fullStr | ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa |
title_full_unstemmed | ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa |
title_short | ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa |
title_sort | complex: conservation and divergence of co-expression networks in a. thaliana, populus and o. sativa |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3925997/ https://www.ncbi.nlm.nih.gov/pubmed/24498971 http://dx.doi.org/10.1186/1471-2164-15-106 |
work_keys_str_mv | AT netoteasergiu complexconservationanddivergenceofcoexpressionnetworksinathalianapopulusandosativa AT sundelldavid complexconservationanddivergenceofcoexpressionnetworksinathalianapopulusandosativa AT streetnathanielr complexconservationanddivergenceofcoexpressionnetworksinathalianapopulusandosativa AT hvidstentorgeirr complexconservationanddivergenceofcoexpressionnetworksinathalianapopulusandosativa |