Cargando…

Correlated spin currents generated by resonant-crossed Andreev reflections in topological superconductors

Topological superconductors, which support Majorana fermion excitations, have been the subject of intense studies due to their novel transport properties and their potential applications in fault-tolerant quantum computations. Here we propose a new type of topological superconductors that can be use...

Descripción completa

Detalles Bibliográficos
Autores principales: He, James J., Wu, Jiansheng, Choy, Ting-Pong, Liu, Xiong-Jun, Tanaka, Y., Law, K. T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3926009/
https://www.ncbi.nlm.nih.gov/pubmed/24492649
http://dx.doi.org/10.1038/ncomms4232
Descripción
Sumario:Topological superconductors, which support Majorana fermion excitations, have been the subject of intense studies due to their novel transport properties and their potential applications in fault-tolerant quantum computations. Here we propose a new type of topological superconductors that can be used as a novel source of correlated spin currents. We show that inducing superconductivity on a AIII class topological insulator wire, which respects a chiral symmetry and supports protected fermionic end states, will result in a topological superconductor. This topological superconductor supports two topological phases with one or two Majorana fermion end states, respectively. In the phase with two Majorana fermions, the superconductor can split Cooper pairs efficiently into electrons in two spatially separated leads due to Majorana-induced resonant-crossed Andreev reflections. The resulting currents in the leads are correlated and spin-polarized. Importantly, the proposed topological superconductors can be realized using quantum anomalous Hall insulators in proximity to superconductors.