Cargando…
Anodic Oxidation and Amperometric Sensing of Hydrazine at a Glassy Carbon Electrode Modified with Cobalt (II) Phthalocyanine–cobalt (II) Tetraphenylporphyrin (CoPc-(CoTPP)(4)) Supramolecular Complex
This paper describes the electrocatalytic behaviour of a glassy carbon electrode (GCE) modified with cobalt(II)phthalocyanine (CoPc) complex peripherally tetrasubstituted with cobalt(II)tetraphenylporphyrin (CoTPP) complexes via ether linkages (i.e., CoPc-(CoTPP)(4)). The features of the immobilised...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3926529/ |
Sumario: | This paper describes the electrocatalytic behaviour of a glassy carbon electrode (GCE) modified with cobalt(II)phthalocyanine (CoPc) complex peripherally tetrasubstituted with cobalt(II)tetraphenylporphyrin (CoTPP) complexes via ether linkages (i.e., CoPc-(CoTPP)(4)). The features of the immobilised pentamer were interrogated with cyclic voltammetry and electrochemical impedance spectroscopy (EIS) using [Fe(CN)(6)](3-/4-) as redox probe revealed enhanced electron transfer properties with k(app) ≈ 18 × 10(-6) cms(-1) compared to that of the bare GCE (4.7 × 10(-6) cms(-1)). The viability of this supramolecular complex as a redox mediator for the anodic oxidation and sensitive amperometric determination of hydrazine in alkaline conditions is described. The electrocatalytic oxidation of hydrazine by GCE-CoPc-(CoTPP)(4) was characterised with satisfactory catalytic current response with low non-Faradaic current (ca. 30 times lower than the bare GCE) and at much lower oxidation potential (ca. 300 mV lower than the bare GCE). A mechanism for the studied electrocatalytic reaction was proposed based on the spectrophotometric evidence that revealed the major involvement of the Co((III))/Co((II)) redox couple of the central CoPc species rather than the CoTPP component of the pentamer. Rate constant for the anodic oxidation of hydrazine was estimated from chronoamperometry as ∼ 3×10(3) M(-1)s(-1). The proposed amperometric sensor displayed excellent charateristics towards the determination of hydrazine in 0.2 M NaOH; such as low overpotentials (+100 mV vs Ag|AgCl), very fast amperometric response time (1 s), linear concentration range of up to 230 μM, with micromolar detection limit, high sensitivity and stability. |
---|