Cargando…
Continuous Monitoring of Turning in Patients with Movement Disability
Difficulty with turning is a major contributor to mobility disability and falls in people with movement disorders, such as Parkinson's disease (PD). Turning often results in freezing and/or falling in patients with PD. However, asking a patient to execute a turn in the clinic often does not rev...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3926561/ https://www.ncbi.nlm.nih.gov/pubmed/24379043 http://dx.doi.org/10.3390/s140100356 |
_version_ | 1782303987022692352 |
---|---|
author | El-Gohary, Mahmoud Pearson, Sean McNames, James Mancini, Martina Horak, Fay Mellone, Sabato Chiari, Lorenzo |
author_facet | El-Gohary, Mahmoud Pearson, Sean McNames, James Mancini, Martina Horak, Fay Mellone, Sabato Chiari, Lorenzo |
author_sort | El-Gohary, Mahmoud |
collection | PubMed |
description | Difficulty with turning is a major contributor to mobility disability and falls in people with movement disorders, such as Parkinson's disease (PD). Turning often results in freezing and/or falling in patients with PD. However, asking a patient to execute a turn in the clinic often does not reveal their impairments. Continuous monitoring of turning with wearable sensors during spontaneous daily activities may help clinicians and patients determine who is at risk of falls and could benefit from preventative interventions. In this study, we show that continuous monitoring of natural turning with wearable sensors during daily activities inside and outside the home is feasible for people with PD and elderly people. We developed an algorithm to detect and characterize turns during gait, using wearable inertial sensors. First, we validate the turning algorithm in the laboratory against a Motion Analysis system and against a video analysis of 21 PD patients and 19 control (CT) subjects wearing an inertial sensor on the pelvis. Compared to Motion Analysis and video, the algorithm maintained a sensitivity of 0.90 and 0.76 and a specificity of 0.75 and 0.65, respectively. Second, we apply the turning algorithm to data collected in the home from 12 PD and 18 CT subjects. The algorithm successfully detects turn characteristics, and the results show that, compared to controls, PD subjects tend to take shorter turns with smaller turn angles and more steps. Furthermore, PD subjects show more variability in all turn metrics throughout the day and the week. |
format | Online Article Text |
id | pubmed-3926561 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-39265612014-02-18 Continuous Monitoring of Turning in Patients with Movement Disability El-Gohary, Mahmoud Pearson, Sean McNames, James Mancini, Martina Horak, Fay Mellone, Sabato Chiari, Lorenzo Sensors (Basel) Article Difficulty with turning is a major contributor to mobility disability and falls in people with movement disorders, such as Parkinson's disease (PD). Turning often results in freezing and/or falling in patients with PD. However, asking a patient to execute a turn in the clinic often does not reveal their impairments. Continuous monitoring of turning with wearable sensors during spontaneous daily activities may help clinicians and patients determine who is at risk of falls and could benefit from preventative interventions. In this study, we show that continuous monitoring of natural turning with wearable sensors during daily activities inside and outside the home is feasible for people with PD and elderly people. We developed an algorithm to detect and characterize turns during gait, using wearable inertial sensors. First, we validate the turning algorithm in the laboratory against a Motion Analysis system and against a video analysis of 21 PD patients and 19 control (CT) subjects wearing an inertial sensor on the pelvis. Compared to Motion Analysis and video, the algorithm maintained a sensitivity of 0.90 and 0.76 and a specificity of 0.75 and 0.65, respectively. Second, we apply the turning algorithm to data collected in the home from 12 PD and 18 CT subjects. The algorithm successfully detects turn characteristics, and the results show that, compared to controls, PD subjects tend to take shorter turns with smaller turn angles and more steps. Furthermore, PD subjects show more variability in all turn metrics throughout the day and the week. Molecular Diversity Preservation International (MDPI) 2013-12-27 /pmc/articles/PMC3926561/ /pubmed/24379043 http://dx.doi.org/10.3390/s140100356 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article El-Gohary, Mahmoud Pearson, Sean McNames, James Mancini, Martina Horak, Fay Mellone, Sabato Chiari, Lorenzo Continuous Monitoring of Turning in Patients with Movement Disability |
title | Continuous Monitoring of Turning in Patients with Movement Disability |
title_full | Continuous Monitoring of Turning in Patients with Movement Disability |
title_fullStr | Continuous Monitoring of Turning in Patients with Movement Disability |
title_full_unstemmed | Continuous Monitoring of Turning in Patients with Movement Disability |
title_short | Continuous Monitoring of Turning in Patients with Movement Disability |
title_sort | continuous monitoring of turning in patients with movement disability |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3926561/ https://www.ncbi.nlm.nih.gov/pubmed/24379043 http://dx.doi.org/10.3390/s140100356 |
work_keys_str_mv | AT elgoharymahmoud continuousmonitoringofturninginpatientswithmovementdisability AT pearsonsean continuousmonitoringofturninginpatientswithmovementdisability AT mcnamesjames continuousmonitoringofturninginpatientswithmovementdisability AT mancinimartina continuousmonitoringofturninginpatientswithmovementdisability AT horakfay continuousmonitoringofturninginpatientswithmovementdisability AT mellonesabato continuousmonitoringofturninginpatientswithmovementdisability AT chiarilorenzo continuousmonitoringofturninginpatientswithmovementdisability |