Cargando…
Vibration Sensor Data Denoising Using a Time-Frequency Manifold for Machinery Fault Diagnosis
Vibration sensor data from a mechanical system are often associated with important measurement information useful for machinery fault diagnosis. However, in practice the existence of background noise makes it difficult to identify the fault signature from the sensing data. This paper introduces the...
Autores principales: | He, Qingbo, Wang, Xiangxiang, Zhou, Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3926563/ https://www.ncbi.nlm.nih.gov/pubmed/24379045 http://dx.doi.org/10.3390/s140100382 |
Ejemplares similares
-
Method for Denoising the Vibration Signal of Rotating Machinery through VMD and MODWPT
por: Zhou, Xiaolong, et al.
Publicado: (2023) -
Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning
por: Li, Chuan, et al.
Publicado: (2016) -
A New De-Noising Method Based on Enhanced Time-Frequency Manifold and Kurtosis-Wavelet Dictionary for Rolling Bearing Fault Vibration Signal
por: Tong, Qingbin, et al.
Publicado: (2022) -
Rotating Machinery Fault Diagnosis Method by Combining Time-Frequency Domain Features and CNN Knowledge Transfer
por: Ye, Lihao, et al.
Publicado: (2021) -
Application of multi-layer denoising based on ensemble empirical mode decomposition in extraction of fault feature of rotating machinery
por: Gao, Kangping, et al.
Publicado: (2021)