Cargando…

A Non-Intrusive Method for Monitoring the Degradation of MOSFETs

Highly reliable embedded systems have been widely applied in the fields of aerospace, nuclear power, high-speed rail, etc., which are related to security and economic development. The reliability of the power supply directly influences the security of the embedded system, and has been the research f...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Li-Feng, Zheng, Yu, Guan, Yong, Wang, Guo-Hui, Li, Xiao-Juan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3926606/
https://www.ncbi.nlm.nih.gov/pubmed/24434873
http://dx.doi.org/10.3390/s140101132
Descripción
Sumario:Highly reliable embedded systems have been widely applied in the fields of aerospace, nuclear power, high-speed rail, etc., which are related to security and economic development. The reliability of the power supply directly influences the security of the embedded system, and has been the research focus of numerous electronic information and energy studies. The degradation of power modules occupies a dominant position among the key factors affecting the power supply reliability. How to dynamically determine the degradation state and forecast the remaining useful life of working power modules is critical. Therefore, an online non-intrusive method of obtaining the degradation state of MOSFETs based on the Volterra series is proposed. It uses the self-driving signal of MOSFETs as a non-intrusive incentive, and extracts the degradation characteristics of MOSFETs by the frequency-domain kernel of the Volterra series. Experimental results show that the identification achieved by the method agrees well with the theoretical analysis.