Cargando…
Effect of the Modulation of Optic Flow Speed on Gait Parameters in Children with Hemiplegic Cerebral Palsy
[Purpose] We investigated the effects of modulation of the optic flow speed on gait parameters in children with hemiplegic cerebral palsy. [Methods] We examined 10 children with hemiplegic cerebral palsy. The children underwent gait analysis under 3 different conditions of optic flow speed: slow, no...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Society of Physical Therapy Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3927028/ https://www.ncbi.nlm.nih.gov/pubmed/24567695 http://dx.doi.org/10.1589/jpts.26.145 |
Sumario: | [Purpose] We investigated the effects of modulation of the optic flow speed on gait parameters in children with hemiplegic cerebral palsy. [Methods] We examined 10 children with hemiplegic cerebral palsy. The children underwent gait analysis under 3 different conditions of optic flow speed: slow, normal, and fast optic flow speed. The children walked across the walkway of a GAITRite system, while watching a virtual reality screen, and walking velocity, cadence, stride length, step length, single support time, and double support time were recorded. [Results] Compared with the other applied flow speed conditions, the fast optic flow speed (2 times the normal speed) significantly increased walking velocity, cadence, normalized step length, base of support, and single support cycle of both the paretic and non-paretic lower limbs. Moreover, compared with the other applied flow speed conditions, the slow optic flow speed (0.25 times the normal speed) yielded a significantly decreased walking velocity, cadence, normalized step length, base of support, and single support cycle for both the paretic and non-paretic lower limbs. [Conclusion] The gait parameters of children with hemiplegic cerebral palsy are altered by modulation of the optic flow speed. Thus, we believe that gait training involving modulation of the optic flow speed is feasible and suitable for resolving abnormal gait patterns in children with hemiplegic cerebral palsy. |
---|