Cargando…

Control of hot-carrier relaxation for realizing ideal quantum-dot intermediate-band solar cells

For intermediate-band solar cells, the broad absorption spectrum of quantum dots (QDs) offers a favorable conversion efficiency, and photocurrent generation via efficient two-step two-photon-absorption (TS-TPA) in QDs is essential for realizing high-performance solar cells. In the last decade, many...

Descripción completa

Detalles Bibliográficos
Autores principales: Tex, David M., Kamiya, Itaru, Kanemitsu, Yoshihiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3927209/
https://www.ncbi.nlm.nih.gov/pubmed/24535195
http://dx.doi.org/10.1038/srep04125
Descripción
Sumario:For intermediate-band solar cells, the broad absorption spectrum of quantum dots (QDs) offers a favorable conversion efficiency, and photocurrent generation via efficient two-step two-photon-absorption (TS-TPA) in QDs is essential for realizing high-performance solar cells. In the last decade, many works were dedicated to improve the TS-TPA efficiency by modifying the QD itself, however, the obtained results are far from the requirements for practical applications. To reveal the mechanisms behind the low TS-TPA efficiency in QDs, we report here on two- and three-beam photocurrent measurements of InAs quantum structures embedded in AlGaAs. Comparison of two- and three-beam photocurrent spectra obtained by subbandgap excitation reveals that the QD TS-TPA efficiency is improved significantly by suppressing the relaxation of hot TS-TPA carriers to unoccupied shallow InAs quantum structure states.