Cargando…
Integrating rapid risk mapping and mobile phone call record data for strategic malaria elimination planning
BACKGROUND: As successful malaria control programmes re-orientate towards elimination, the identification of transmission foci, targeting of attack measures to high-risk areas and management of importation risk become high priorities. When resources are limited and transmission is varying seasonally...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3927223/ https://www.ncbi.nlm.nih.gov/pubmed/24512144 http://dx.doi.org/10.1186/1475-2875-13-52 |
_version_ | 1782304090611515392 |
---|---|
author | Tatem, Andrew J Huang, Zhuojie Narib, Clothilde Kumar, Udayan Kandula, Deepika Pindolia, Deepa K Smith, David L Cohen, Justin M Graupe, Bonita Uusiku, Petrina Lourenço, Christopher |
author_facet | Tatem, Andrew J Huang, Zhuojie Narib, Clothilde Kumar, Udayan Kandula, Deepika Pindolia, Deepa K Smith, David L Cohen, Justin M Graupe, Bonita Uusiku, Petrina Lourenço, Christopher |
author_sort | Tatem, Andrew J |
collection | PubMed |
description | BACKGROUND: As successful malaria control programmes re-orientate towards elimination, the identification of transmission foci, targeting of attack measures to high-risk areas and management of importation risk become high priorities. When resources are limited and transmission is varying seasonally, approaches that can rapidly prioritize areas for surveillance and control can be valuable, and the most appropriate attack measure for a particular location is likely to differ depending on whether it exports or imports malaria infections. METHODS/RESULTS: Here, using the example of Namibia, a method for targeting of interventions using surveillance data, satellite imagery, and mobile phone call records to support elimination planning is described. One year of aggregated movement patterns for over a million people across Namibia are analyzed, and linked with case-based risk maps built on satellite imagery. By combining case-data and movement, the way human population movements connect transmission risk areas is demonstrated. Communities that were strongly connected by relatively higher levels of movement were then identified, and net export and import of travellers and infection risks by region were quantified. These maps can aid the design of targeted interventions to maximally reduce the number of cases exported to other regions while employing appropriate interventions to manage risk in places that import them. CONCLUSIONS: The approaches presented can be rapidly updated and used to identify where active surveillance for both local and imported cases should be increased, which regions would benefit from coordinating efforts, and how spatially progressive elimination plans can be designed. With improvements in surveillance systems linked to improved diagnosis of malaria, detailed satellite imagery being readily available and mobile phone usage data continually being collected by network providers, the potential exists to make operational use of such valuable, complimentary and contemporary datasets on an ongoing basis in infectious disease control and elimination. |
format | Online Article Text |
id | pubmed-3927223 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-39272232014-02-19 Integrating rapid risk mapping and mobile phone call record data for strategic malaria elimination planning Tatem, Andrew J Huang, Zhuojie Narib, Clothilde Kumar, Udayan Kandula, Deepika Pindolia, Deepa K Smith, David L Cohen, Justin M Graupe, Bonita Uusiku, Petrina Lourenço, Christopher Malar J Research BACKGROUND: As successful malaria control programmes re-orientate towards elimination, the identification of transmission foci, targeting of attack measures to high-risk areas and management of importation risk become high priorities. When resources are limited and transmission is varying seasonally, approaches that can rapidly prioritize areas for surveillance and control can be valuable, and the most appropriate attack measure for a particular location is likely to differ depending on whether it exports or imports malaria infections. METHODS/RESULTS: Here, using the example of Namibia, a method for targeting of interventions using surveillance data, satellite imagery, and mobile phone call records to support elimination planning is described. One year of aggregated movement patterns for over a million people across Namibia are analyzed, and linked with case-based risk maps built on satellite imagery. By combining case-data and movement, the way human population movements connect transmission risk areas is demonstrated. Communities that were strongly connected by relatively higher levels of movement were then identified, and net export and import of travellers and infection risks by region were quantified. These maps can aid the design of targeted interventions to maximally reduce the number of cases exported to other regions while employing appropriate interventions to manage risk in places that import them. CONCLUSIONS: The approaches presented can be rapidly updated and used to identify where active surveillance for both local and imported cases should be increased, which regions would benefit from coordinating efforts, and how spatially progressive elimination plans can be designed. With improvements in surveillance systems linked to improved diagnosis of malaria, detailed satellite imagery being readily available and mobile phone usage data continually being collected by network providers, the potential exists to make operational use of such valuable, complimentary and contemporary datasets on an ongoing basis in infectious disease control and elimination. BioMed Central 2014-02-10 /pmc/articles/PMC3927223/ /pubmed/24512144 http://dx.doi.org/10.1186/1475-2875-13-52 Text en Copyright © 2014 Tatem et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Tatem, Andrew J Huang, Zhuojie Narib, Clothilde Kumar, Udayan Kandula, Deepika Pindolia, Deepa K Smith, David L Cohen, Justin M Graupe, Bonita Uusiku, Petrina Lourenço, Christopher Integrating rapid risk mapping and mobile phone call record data for strategic malaria elimination planning |
title | Integrating rapid risk mapping and mobile phone call record data for strategic malaria elimination planning |
title_full | Integrating rapid risk mapping and mobile phone call record data for strategic malaria elimination planning |
title_fullStr | Integrating rapid risk mapping and mobile phone call record data for strategic malaria elimination planning |
title_full_unstemmed | Integrating rapid risk mapping and mobile phone call record data for strategic malaria elimination planning |
title_short | Integrating rapid risk mapping and mobile phone call record data for strategic malaria elimination planning |
title_sort | integrating rapid risk mapping and mobile phone call record data for strategic malaria elimination planning |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3927223/ https://www.ncbi.nlm.nih.gov/pubmed/24512144 http://dx.doi.org/10.1186/1475-2875-13-52 |
work_keys_str_mv | AT tatemandrewj integratingrapidriskmappingandmobilephonecallrecorddataforstrategicmalariaeliminationplanning AT huangzhuojie integratingrapidriskmappingandmobilephonecallrecorddataforstrategicmalariaeliminationplanning AT naribclothilde integratingrapidriskmappingandmobilephonecallrecorddataforstrategicmalariaeliminationplanning AT kumarudayan integratingrapidriskmappingandmobilephonecallrecorddataforstrategicmalariaeliminationplanning AT kanduladeepika integratingrapidriskmappingandmobilephonecallrecorddataforstrategicmalariaeliminationplanning AT pindoliadeepak integratingrapidriskmappingandmobilephonecallrecorddataforstrategicmalariaeliminationplanning AT smithdavidl integratingrapidriskmappingandmobilephonecallrecorddataforstrategicmalariaeliminationplanning AT cohenjustinm integratingrapidriskmappingandmobilephonecallrecorddataforstrategicmalariaeliminationplanning AT graupebonita integratingrapidriskmappingandmobilephonecallrecorddataforstrategicmalariaeliminationplanning AT uusikupetrina integratingrapidriskmappingandmobilephonecallrecorddataforstrategicmalariaeliminationplanning AT lourencochristopher integratingrapidriskmappingandmobilephonecallrecorddataforstrategicmalariaeliminationplanning |