Cargando…
Novel insights into the disease etiology of laminopathies
Laminopathies are a heterogeneous group of diseases that are caused by mutations in the nuclear envelope proteins lamins A and C. Laminopathies include dilated cardiomyopathy, Emery-Dreifuss muscular dystrophy, and familial partial lipodystrophy. Despite their near-ubiquitous expression, most lamino...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Landes Bioscience
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3927491/ https://www.ncbi.nlm.nih.gov/pubmed/24860693 http://dx.doi.org/10.4161/rdis.27002 |
Sumario: | Laminopathies are a heterogeneous group of diseases that are caused by mutations in the nuclear envelope proteins lamins A and C. Laminopathies include dilated cardiomyopathy, Emery-Dreifuss muscular dystrophy, and familial partial lipodystrophy. Despite their near-ubiquitous expression, most laminopathies involve highly tissue-specific phenotypes, often affecting skeletal and cardiac muscle. The underlying mechanism(s) remain incompletely understood. We recently reported that altered actin dynamics in lamin A/C-deficient and mutant cells disturb nuclear shuttling of the transcriptional co-activator MKL1, which is critical for cardiac function. Expression of the inner nuclear membrane protein emerin rescues MKL1 translocation through modulating actin dynamics. Here, we elaborate on these findings, discuss new insights into the role of nuclear actin in MKL1activity, and demonstrate that primary human skin fibroblasts from a patient with dilated cardiomyopathy have impaired MKL1 nuclear translocation. These findings further strengthen the relevance of impaired MKL1 signaling as a potential contributor to the disease mechanism in laminopathies. |
---|