Cargando…

Toward a gene therapy for neurological and somatic MPSIIIA

Mucopolysaccharidosis Type IIIA (MPSIIIA) represents an unmet medical need. MPSIIIA shares with many other lysosomal storage disorders (LSD) the characteristic of being a severe neurodegenerative disease accompanied by mild somatic involvement. Thus, the main target organ for the development of new...

Descripción completa

Detalles Bibliográficos
Autores principales: Haurigot, Virginia, Bosch, Fatima
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Landes Bioscience 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3927492/
https://www.ncbi.nlm.nih.gov/pubmed/25003015
http://dx.doi.org/10.4161/rdis.27209
Descripción
Sumario:Mucopolysaccharidosis Type IIIA (MPSIIIA) represents an unmet medical need. MPSIIIA shares with many other lysosomal storage disorders (LSD) the characteristic of being a severe neurodegenerative disease accompanied by mild somatic involvement. Thus, the main target organ for the development of new treatments is the central nervous system (CNS), but overall clinical efficacy would be greatly enhanced by simultaneous correction of peripheral disease. We have recently developed a novel treatment for MPSIIIA based on the delivery to the cerebrospinal fluid of serotype 9 adeno-associated virus (AAV9)-derived vectors. This gene therapy strategy corrected both CNS and somatic pathology in animal models through widespread transduction of CNS, peripheral nervous system (PNS), and liver. The work set the grounds for the clinical translation of the approach to treat MPSIIIA in humans. Here we discuss some important considerations that further support the applicability of this treatment to MPSIIIA and other LSD with CNS and somatic involvement.