Cargando…
An Auto-Recognizing System for Dice Games Using a Modified Unsupervised Grey Clustering Algorithm
In this paper, a novel identification method based on a machine vision system is proposed to recognize the score of dice. The system employs image processing techniques, and the modified unsupervised grey clustering algorithm (MUGCA) to estimate the location of each die and identify the spot number...
Autor principal: | Huang, Kuo-Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3927534/ https://www.ncbi.nlm.nih.gov/pubmed/27879761 |
Ejemplares similares
-
May the passion be with you: The addictive potential of collectible card games, miniatures, and dice of the Star Wars universe
por: Calvo, Fran, et al.
Publicado: (2018) -
An unsupervised neuromorphic clustering algorithm
por: Diamond, Alan, et al.
Publicado: (2019) -
Unsupervised ranking of clustering algorithms by INFOMAX
por: Sikdar, Sandipan, et al.
Publicado: (2020) -
Auto-analysis system for graphite morphology of grey cast iron
por: Jiang, Hong, et al.
Publicado: (2003) -
Multiscale Unsupervised Segmentation of SAR Imagery Using the Genetic Algorithm
por: Wen, Xian-Bin, et al.
Publicado: (2008)