Cargando…

A New Method for Predicting Patient Survivorship Using Efficient Bayesian Network Learning

The purpose of this investigation is to develop and evaluate a new Bayesian network (BN)-based patient survivorship prediction method. The central hypothesis is that the method predicts patient survivorship well, while having the capability to handle high-dimensional data and be incorporated into a...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Xia, Xue, Diyang, Brufsky, Adam, Khan, Seema, Neapolitan, Richard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Libertas Academica 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3928477/
https://www.ncbi.nlm.nih.gov/pubmed/24558297
http://dx.doi.org/10.4137/CIN.S13053
Descripción
Sumario:The purpose of this investigation is to develop and evaluate a new Bayesian network (BN)-based patient survivorship prediction method. The central hypothesis is that the method predicts patient survivorship well, while having the capability to handle high-dimensional data and be incorporated into a clinical decision support system (CDSS). We have developed EBMC_Survivorship (EBMC_S), which predicts survivorship for each year individually. EBMC_S is based on the EBMC BN algorithm, which has been shown to handle high-dimensional data. BNs have excellent architecture for decision support systems. In this study, we evaluate EBMC_S using the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset, which concerns breast tumors. A 5-fold cross-validation study indicates that EMBC_S performs better than the Cox proportional hazard model and is comparable to the random survival forest method. We show that EBMC_S provides additional information such as sensitivity analyses, which covariates predict each year, and yearly areas under the ROC curve (AUROCs). We conclude that our investigation supports the central hypothesis.