Cargando…
High-Accuracy Approximation of High-Rank Derivatives: Isotropic Finite Differences Based on Lattice-Boltzmann Stencils
We propose isotropic finite differences for high-accuracy approximation of high-rank derivatives. These finite differences are based on direct application of lattice-Boltzmann stencils. The presented finite-difference expressions are valid in any dimension, particularly in two and three dimensions,...
Autores principales: | Mattila, Keijo Kalervo, Hegele Júnior, Luiz Adolfo, Philippi, Paulo Cesar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3929286/ https://www.ncbi.nlm.nih.gov/pubmed/24688360 http://dx.doi.org/10.1155/2014/142907 |
Ejemplares similares
-
Accuracy of compact-stencil interpolation algorithms for unstructured mesh finite volume solver
por: Tasri, Adek, et al.
Publicado: (2021) -
Lattice Boltzmann Method for Evaluating Hydraulic Conductivity of Finite Array of Spheres
por: Camargo, Mário A., et al.
Publicado: (2012) -
Crystallographic Lattice Boltzmann Method
por: Namburi, Manjusha, et al.
Publicado: (2016) -
Extended Lattice Boltzmann Model
por: Saadat, Mohammad Hossein, et al.
Publicado: (2021) -
The Lattice Boltzmann method: principles and practice
por: Krüger, Timm, et al.
Publicado: (2017)