Cargando…
Attention During Natural Vision Warps Semantic Representation Across the Human Brain
Little is known about how attention changes the cortical representation of sensory information in humans. Based on neurophysiological evidence, we hypothesized that attention causes tuning changes to expand the representation of attended stimuli at the cost of unattended stimuli. To investigate this...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3929490/ https://www.ncbi.nlm.nih.gov/pubmed/23603707 http://dx.doi.org/10.1038/nn.3381 |
Sumario: | Little is known about how attention changes the cortical representation of sensory information in humans. Based on neurophysiological evidence, we hypothesized that attention causes tuning changes to expand the representation of attended stimuli at the cost of unattended stimuli. To investigate this issue we used functional MRI (fMRI) to measure how semantic representation changes when searching for different object categories in natural movies. We find that many voxels across occipito-temporal and fronto-parietal cortex shift their tuning toward the attended category. These tuning shifts expand the representation of the attended category and of semantically-related but unattended categories, and compress the representation of categories semantically-dissimilar to the target. Attentional warping of semantic representation occurs even when the attended category is not present in the movie, thus the effect is not a target-detection artifact. These results suggest that attention dynamically alters visual representation to optimize processing of behaviorally relevant objects during natural vision. |
---|