Cargando…
Wound Morphology and Topography in the Diabetic Foot: Hurdles in Implementing Angiosome-Guided Revascularization
Purpose. Angiosome-guided revascularization is an approach that improves wound healing but requires a surgeon to determine which angiosomes are ischemic. This process can be more difficult than anticipated because diabetic foot (DF) wounds vary greatly in quantity, morphology, and topography. This p...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3929512/ https://www.ncbi.nlm.nih.gov/pubmed/24624299 http://dx.doi.org/10.1155/2014/672897 |
_version_ | 1782304399371010048 |
---|---|
author | Aerden, Dimitri Denecker, Nathalie Gallala, Sarah Debing, Erik Van den Brande, Pierre |
author_facet | Aerden, Dimitri Denecker, Nathalie Gallala, Sarah Debing, Erik Van den Brande, Pierre |
author_sort | Aerden, Dimitri |
collection | PubMed |
description | Purpose. Angiosome-guided revascularization is an approach that improves wound healing but requires a surgeon to determine which angiosomes are ischemic. This process can be more difficult than anticipated because diabetic foot (DF) wounds vary greatly in quantity, morphology, and topography. This paper explores to what extent the heterogeneous presentation of DF wounds impedes development of a proper revascularization strategy. Methods. Data was retrieved from a registry of patients scheduled for below-the-knee (BTK) revascularization. Photographs of the foot and historic benchmark diagrams were used to assign wounds to their respective angiosomes. Results. In 185 limbs we detected 345 wounds. Toe wounds (53.9%) could not be designated to a specific angiosome due to dual blood supply. Ambiguity in wound stratification into angiosomes was highest at the heel, achilles tendon, and lateral/medial side of the foot and lowest for malleolar wounds. In 18.4% of the DF, at least some wounds could not confidently be categorized. Proximal wounds (coinciding with toe wounds) further steered revascularization strategy in 63.6%. Multiple wounds required multiple BTK revascularization in 8.6%. Conclusion. The heterogeneous presentation in diabetic foot wounds hampers unambiguous identification of ischemic angiosomes, and as such diminishes the capacity of the angiosome model to optimize revascularization strategy. |
format | Online Article Text |
id | pubmed-3929512 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-39295122014-03-12 Wound Morphology and Topography in the Diabetic Foot: Hurdles in Implementing Angiosome-Guided Revascularization Aerden, Dimitri Denecker, Nathalie Gallala, Sarah Debing, Erik Van den Brande, Pierre Int J Vasc Med Clinical Study Purpose. Angiosome-guided revascularization is an approach that improves wound healing but requires a surgeon to determine which angiosomes are ischemic. This process can be more difficult than anticipated because diabetic foot (DF) wounds vary greatly in quantity, morphology, and topography. This paper explores to what extent the heterogeneous presentation of DF wounds impedes development of a proper revascularization strategy. Methods. Data was retrieved from a registry of patients scheduled for below-the-knee (BTK) revascularization. Photographs of the foot and historic benchmark diagrams were used to assign wounds to their respective angiosomes. Results. In 185 limbs we detected 345 wounds. Toe wounds (53.9%) could not be designated to a specific angiosome due to dual blood supply. Ambiguity in wound stratification into angiosomes was highest at the heel, achilles tendon, and lateral/medial side of the foot and lowest for malleolar wounds. In 18.4% of the DF, at least some wounds could not confidently be categorized. Proximal wounds (coinciding with toe wounds) further steered revascularization strategy in 63.6%. Multiple wounds required multiple BTK revascularization in 8.6%. Conclusion. The heterogeneous presentation in diabetic foot wounds hampers unambiguous identification of ischemic angiosomes, and as such diminishes the capacity of the angiosome model to optimize revascularization strategy. Hindawi Publishing Corporation 2014 2014-02-02 /pmc/articles/PMC3929512/ /pubmed/24624299 http://dx.doi.org/10.1155/2014/672897 Text en Copyright © 2014 Dimitri Aerden et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Clinical Study Aerden, Dimitri Denecker, Nathalie Gallala, Sarah Debing, Erik Van den Brande, Pierre Wound Morphology and Topography in the Diabetic Foot: Hurdles in Implementing Angiosome-Guided Revascularization |
title | Wound Morphology and Topography in the Diabetic Foot: Hurdles in Implementing Angiosome-Guided Revascularization |
title_full | Wound Morphology and Topography in the Diabetic Foot: Hurdles in Implementing Angiosome-Guided Revascularization |
title_fullStr | Wound Morphology and Topography in the Diabetic Foot: Hurdles in Implementing Angiosome-Guided Revascularization |
title_full_unstemmed | Wound Morphology and Topography in the Diabetic Foot: Hurdles in Implementing Angiosome-Guided Revascularization |
title_short | Wound Morphology and Topography in the Diabetic Foot: Hurdles in Implementing Angiosome-Guided Revascularization |
title_sort | wound morphology and topography in the diabetic foot: hurdles in implementing angiosome-guided revascularization |
topic | Clinical Study |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3929512/ https://www.ncbi.nlm.nih.gov/pubmed/24624299 http://dx.doi.org/10.1155/2014/672897 |
work_keys_str_mv | AT aerdendimitri woundmorphologyandtopographyinthediabeticfoothurdlesinimplementingangiosomeguidedrevascularization AT deneckernathalie woundmorphologyandtopographyinthediabeticfoothurdlesinimplementingangiosomeguidedrevascularization AT gallalasarah woundmorphologyandtopographyinthediabeticfoothurdlesinimplementingangiosomeguidedrevascularization AT debingerik woundmorphologyandtopographyinthediabeticfoothurdlesinimplementingangiosomeguidedrevascularization AT vandenbrandepierre woundmorphologyandtopographyinthediabeticfoothurdlesinimplementingangiosomeguidedrevascularization |